These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65. Increased PHLPP1 expression through ERK-4E-BP1 signaling axis drives nicotine induced oxidative stress related damage of cardiomyocytes. Mohammed Abdul KS; Han K; Guerrero AB; Wilson CN; Kulkarni A; Purcell NH J Mol Cell Cardiol; 2024 Aug; 193():100-112. PubMed ID: 38851627 [TBL] [Abstract][Full Text] [Related]
66. Regulation of translation initiation by amino acids in eukaryotic cells. Kimball SR Prog Mol Subcell Biol; 2001; 26():155-84. PubMed ID: 11575165 [TBL] [Abstract][Full Text] [Related]
67. Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. Connor JH; Lyles DS J Virol; 2002 Oct; 76(20):10177-87. PubMed ID: 12239292 [TBL] [Abstract][Full Text] [Related]
68. p38α MAPK proximity assay reveals a regulatory mechanism of alternative splicing in cardiomyocytes. Dumont AA; Dumont L; Berthiaume J; Auger-Messier M Biochim Biophys Acta Mol Cell Res; 2019 Dec; 1866(12):118557. PubMed ID: 31505169 [TBL] [Abstract][Full Text] [Related]
69. SRSF3 represses the expression of PDCD4 protein by coordinated regulation of alternative splicing, export and translation. Park SK; Jeong S Biochem Biophys Res Commun; 2016 Feb; 470(2):431-438. PubMed ID: 26773498 [TBL] [Abstract][Full Text] [Related]
70. Cardiomyocyte-specific deletion of leptin receptors causes lethal heart failure in Cre-recombinase-mediated cardiotoxicity. Hall ME; Smith G; Hall JE; Stec DE Am J Physiol Regul Integr Comp Physiol; 2012 Dec; 303(12):R1241-50. PubMed ID: 23115124 [TBL] [Abstract][Full Text] [Related]
71. Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Nathan CO; Amirghahari N; Abreo F; Rong X; Caldito G; Jones ML; Zhou H; Smith M; Kimberly D; Glass J Clin Cancer Res; 2004 Sep; 10(17):5820-7. PubMed ID: 15355912 [TBL] [Abstract][Full Text] [Related]
72. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Gingras AC; Gygi SP; Raught B; Polakiewicz RD; Abraham RT; Hoekstra MF; Aebersold R; Sonenberg N Genes Dev; 1999 Jun; 13(11):1422-37. PubMed ID: 10364159 [TBL] [Abstract][Full Text] [Related]
73. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Xiao W; Adhikari S; Dahal U; Chen YS; Hao YJ; Sun BF; Sun HY; Li A; Ping XL; Lai WY; Wang X; Ma HL; Huang CM; Yang Y; Huang N; Jiang GB; Wang HL; Zhou Q; Wang XJ; Zhao YL; Yang YG Mol Cell; 2016 Feb; 61(4):507-519. PubMed ID: 26876937 [TBL] [Abstract][Full Text] [Related]
74. Construction and evaluation of an adenoviral vector for the liver-specific expression of the serine/arginine-rich splicing factor, SRSF3. Suchanek AL; Salati LM Plasmid; 2015 Nov; 82():1-9. PubMed ID: 26241824 [TBL] [Abstract][Full Text] [Related]
75. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Wang X; Beugnet A; Murakami M; Yamanaka S; Proud CG Mol Cell Biol; 2005 Apr; 25(7):2558-72. PubMed ID: 15767663 [TBL] [Abstract][Full Text] [Related]
76. Increased milk protein synthesis in response to exogenous growth hormone is associated with changes in mechanistic (mammalian) target of rapamycin (mTOR)C1-dependent and independent cell signaling. Sciascia Q; Pacheco D; McCoard SA J Dairy Sci; 2013 Apr; 96(4):2327-2338. PubMed ID: 23462168 [TBL] [Abstract][Full Text] [Related]
77. Cardiac Stim1 Silencing Impairs Adaptive Hypertrophy and Promotes Heart Failure Through Inactivation of mTORC2/Akt Signaling. Bénard L; Oh JG; Cacheux M; Lee A; Nonnenmacher M; Matasic DS; Kohlbrenner E; Kho C; Pavoine C; Hajjar RJ; Hulot JS Circulation; 2016 Apr; 133(15):1458-71; discussion 1471. PubMed ID: 26936863 [TBL] [Abstract][Full Text] [Related]
78. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Li J; Gao E; Vite A; Yi R; Gomez L; Goossens S; van Roy F; Radice GL Circ Res; 2015 Jan; 116(1):70-9. PubMed ID: 25305307 [TBL] [Abstract][Full Text] [Related]
79. Splicing factor SRSF3 promotes the progression of cervical cancer through regulating DDX5. Che Y; Bai M; Lu K; Fu L Mol Carcinog; 2023 Feb; 62(2):210-223. PubMed ID: 36282044 [TBL] [Abstract][Full Text] [Related]
80. SRSF3/AMOTL1 splicing axis promotes the tumorigenesis of nasopharyngeal carcinoma through regulating the nucleus translocation of YAP1. Xu XC; Jiang JX; Zhou YQ; He S; Liu Y; Li YQ; Wei PP; Bei JX; Sun J; Luo CL Cell Death Dis; 2023 Aug; 14(8):511. PubMed ID: 37558679 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]