These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31145792)

  • 21. An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice.
    Le TTT; Williams B; Mundree SG
    Physiol Plant; 2018 Jan; 162(1):13-34. PubMed ID: 28466470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring miRNAs for developing climate-resilient crops: A perspective review.
    Xu J; Hou QM; Khare T; Verma SK; Kumar V
    Sci Total Environ; 2019 Feb; 653():91-104. PubMed ID: 30408672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops.
    Reguera M; Peleg Z; Blumwald E
    Biochim Biophys Acta; 2012 Feb; 1819(2):186-94. PubMed ID: 21867784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial osmosensing transporters.
    Wood JM
    Methods Enzymol; 2007; 428():77-107. PubMed ID: 17875413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants.
    Yoshida T; Mogami J; Yamaguchi-Shinozaki K
    Curr Opin Plant Biol; 2014 Oct; 21():133-139. PubMed ID: 25104049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Crops for the Future: A Phosphoproteomics Approach.
    Kumar V; Khare T; Sharma M; Wani SH
    Curr Protein Pept Sci; 2018 Feb; 19(4):413-426. PubMed ID: 28190387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of a protein kinase gene MpSnRK2.10 from Malus prunifolia confers tolerance to drought stress in transgenic Arabidopsis thaliana and apple.
    Shao Y; Zhang X; van Nocker S; Gong X; Ma F
    Gene; 2019 Apr; 692():26-34. PubMed ID: 30641216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Erianthus arundinaceus HSP70 (EaHSP70) Acts as a Key Regulator in the Formation of Anisotropic Interdigitation in Sugarcane (Saccharum spp. hybrid) in Response to Drought Stress.
    Augustine SM; Cherian AV; Syamaladevi DP; Subramonian N
    Plant Cell Physiol; 2015 Dec; 56(12):2368-80. PubMed ID: 26423958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of high salinity tolerance in plants.
    Tuteja N
    Methods Enzymol; 2007; 428():419-38. PubMed ID: 17875432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress.
    Yang G; Chen S; Li D; Gao X; Su L; Peng S; Zhai M
    Physiol Plant; 2019 Jul; 166(3):748-761. PubMed ID: 30187482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterologous Expression of Two Jatropha Aquaporins Imparts Drought and Salt Tolerance and Improves Seed Viability in Transgenic Arabidopsis thaliana.
    Khan K; Agarwal P; Shanware A; Sane VA
    PLoS One; 2015; 10(6):e0128866. PubMed ID: 26067295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought stress tolerance by maintaining chlorophyll content and improving the antioxidant machinery.
    Lakra N; Nutan KK; Das P; Anwar K; Singla-Pareek SL; Pareek A
    J Plant Physiol; 2015 Mar; 176():36-46. PubMed ID: 25543954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NAC transcription factors in plant abiotic stress responses.
    Nakashima K; Takasaki H; Mizoi J; Shinozaki K; Yamaguchi-Shinozaki K
    Biochim Biophys Acta; 2012 Feb; 1819(2):97-103. PubMed ID: 22037288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Link between Lipid Second Messengers and Osmotic Stress in Plants.
    Rodas-Junco BA; Racagni-Di-Palma GE; Canul-Chan M; Usorach J; Hernández-Sotomayor SMT
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience.
    Cardinale F; Korwin Krukowski P; Schubert A; Visentin I
    J Exp Bot; 2018 Apr; 69(9):2291-2303. PubMed ID: 29346683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor.
    Urao T; Yakubov B; Satoh R; Yamaguchi-Shinozaki K; Seki M; Hirayama T; Shinozaki K
    Plant Cell; 1999 Sep; 11(9):1743-54. PubMed ID: 10488240
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.
    Shabala S; Bose J; Fuglsang AT; Pottosin I
    J Exp Bot; 2016 Feb; 67(4):1015-31. PubMed ID: 26507891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of the soybean GmWNK1 altered the sensitivity to salt and osmotic stress in Arabidopsis.
    Wang Y; Suo H; Zhuang C; Ma H; Yan X
    J Plant Physiol; 2011 Dec; 168(18):2260-7. PubMed ID: 21925762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osmosensing by bacteria.
    Wood JM
    Sci STKE; 2006 Oct; 2006(357):pe43. PubMed ID: 17047223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.