These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 31146074)

  • 21. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.
    Bhattacharyya PN; Jha DK
    World J Microbiol Biotechnol; 2012 Apr; 28(4):1327-50. PubMed ID: 22805914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of N
    Xu J; Kloepper JW; Huang P; McInroy JA; Hu CH
    J Basic Microbiol; 2018 May; 58(5):459-471. PubMed ID: 29473969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review.
    Arcand MM; Schneider KD
    An Acad Bras Cienc; 2006 Dec; 78(4):791-807. PubMed ID: 17143413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofertilizers: a potential approach for sustainable agriculture development.
    Mahanty T; Bhattacharjee S; Goswami M; Bhattacharyya P; Das B; Ghosh A; Tribedi P
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):3315-3335. PubMed ID: 27888482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does a rhizospheric microorganism enhance K⁺ availability in agricultural soils?
    Meena VS; Maurya BR; Verma JP
    Microbiol Res; 2014; 169(5-6):337-47. PubMed ID: 24315210
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.
    Vejan P; Abdullah R; Khadiran T; Ismail S; Nasrulhaq Boyce A
    Molecules; 2016 Apr; 21(5):. PubMed ID: 27136521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production.
    Tamreihao K; Mukherjee S; Khunjamayum R; Devi LJ; Asem RS; Ningthoujam DS
    J Basic Microbiol; 2019 Jan; 59(1):4-13. PubMed ID: 30353928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microorganisms in biological control strategies to manage microbial plant pathogens: a review.
    Boro M; Sannyasi S; Chettri D; Verma AK
    Arch Microbiol; 2022 Oct; 204(11):666. PubMed ID: 36214917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Harnessing microbial volatiles to replace pesticides and fertilizers.
    Thomas G; Withall D; Birkett M
    Microb Biotechnol; 2020 Sep; 13(5):1366-1376. PubMed ID: 32767638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment.
    Fernandez AL; Sheaffer CC; Wyse DL; Staley C; Gould TJ; Sadowsky MJ
    Sci Total Environ; 2016 Oct; 566-567():949-959. PubMed ID: 27288977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodiversity and Functional Attributes of Rhizospheric Microbiomes: Potential Tools for Sustainable Agriculture.
    Kour D; Kour H; Khan SS; Khan RT; Bhardwaj M; Kailoo S; Kumari C; Rasool S; Yadav AN; Sharma YP
    Curr Microbiol; 2023 Apr; 80(6):192. PubMed ID: 37101055
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.
    Berg G
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):11-8. PubMed ID: 19568745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi.
    Igiehon NO; Babalola OO
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):4871-4881. PubMed ID: 28547568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cultivation-Based and Molecular Assessment of Bacterial Diversity in the Rhizosheath of Wheat under Different Crop Rotations.
    Tahir M; Mirza MS; Hameed S; Dimitrov MR; Smidt H
    PLoS One; 2015; 10(6):e0130030. PubMed ID: 26121588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria.
    Hamedi J; Mohammadipanah F
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):157-71. PubMed ID: 25410828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeast a potential bio-agent: future for plant growth and postharvest disease management for sustainable agriculture.
    Mukherjee A; Verma JP; Gaurav AK; Chouhan GK; Patel JS; Hesham AE
    Appl Microbiol Biotechnol; 2020 Feb; 104(4):1497-1510. PubMed ID: 31915901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the Role of
    Sevillano-Caño J; García MJ; Córdoba-Galván C; Luque-Cruz C; Agustí-Brisach C; Lucena C; Ramos J; Pérez-Vicente R; Romera FJ
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens.
    Ngalimat MS; Mohd Hata E; Zulperi D; Ismail SI; Ismail MR; Mohd Zainudin NAI; Saidi NB; Yusof MT
    Microorganisms; 2021 Mar; 9(4):. PubMed ID: 33810209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant growth promotion by phosphate solubilizing bacteria.
    Zaidi A; Khan MS; Ahemad M; Oves M
    Acta Microbiol Immunol Hung; 2009 Sep; 56(3):263-84. PubMed ID: 19789141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.