These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31146119)
1. Drug promiscuity: Exploring the polypharmacology potential of 1, 3, 6-trisubstituted 1, 4-diazepane-7-ones as an inhibitor of the 'god father' of immune checkpoint. Soremekun OS; Olotu FA; Agoni C; Soliman MES Comput Biol Chem; 2019 Jun; 80():433-440. PubMed ID: 31146119 [TBL] [Abstract][Full Text] [Related]
2. Discovery and structure-activity relationship study of 1,3,6-trisubstituted 1,4-diazepane-7-ones as novel human kallikrein 7 inhibitors. Murafuji H; Sakai H; Goto M; Imajo S; Sugawara H; Muto T Bioorg Med Chem Lett; 2017 Dec; 27(23):5272-5276. PubMed ID: 29102227 [TBL] [Abstract][Full Text] [Related]
3. Quantum binding energies of checkpoint CTLA-4 in complex with the immuno-oncological drug ipilimumab. Tavares ABMLA; Albuquerque EL Phys Chem Chem Phys; 2021 Jul; 23(29):15620-15627. PubMed ID: 34264254 [TBL] [Abstract][Full Text] [Related]
4. Structure-based drug design of 1,3,6-trisubstituted 1,4-diazepan-7-ones as selective human kallikrein 7 inhibitors. Murafuji H; Sakai H; Goto M; Oyama Y; Imajo S; Sugawara H; Tomoo T; Muto T Bioorg Med Chem Lett; 2018 May; 28(8):1371-1375. PubMed ID: 29550094 [TBL] [Abstract][Full Text] [Related]
5. Visualizing protein-ligand binding with chemical energy-wise decomposition (CHEWD): application to ligand binding in the kallikrein-8 S1 Site. Raza S; Ranaghan KE; van der Kamp MW; Woods CJ; Mulholland AJ; Azam SS J Comput Aided Mol Des; 2019 May; 33(5):461-475. PubMed ID: 30989572 [TBL] [Abstract][Full Text] [Related]
6. Structure-based drug design to overcome species differences in kallikrein 7 inhibition of 1,3,6-trisubstituted 1,4-diazepan-7-ones. Murafuji H; Sugawara H; Goto M; Oyama Y; Sakai H; Imajo S; Tomoo T; Muto T Bioorg Med Chem; 2018 Jul; 26(12):3639-3653. PubMed ID: 29884582 [TBL] [Abstract][Full Text] [Related]
7. Revealing the atomistic details behind the binding of B7-1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Ganesan A; Moon TC; Barakat KH Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2764-2778. PubMed ID: 30251665 [TBL] [Abstract][Full Text] [Related]
8. High Impact: The Role of Promiscuous Binding Sites in Polypharmacology. Cerisier N; Petitjean M; Regad L; Bayard Q; Réau M; Badel A; Camproux AC Molecules; 2019 Jul; 24(14):. PubMed ID: 31295958 [TBL] [Abstract][Full Text] [Related]
9. GES polypharmacology fingerprints: a novel approach for drug repositioning. Pérez-Nueno VI; Karaboga AS; Souchet M; Ritchie DW J Chem Inf Model; 2014 Mar; 54(3):720-34. PubMed ID: 24494653 [TBL] [Abstract][Full Text] [Related]
10. Polypharmacology: challenges and opportunities in drug discovery. Anighoro A; Bajorath J; Rastelli G J Med Chem; 2014 Oct; 57(19):7874-87. PubMed ID: 24946140 [TBL] [Abstract][Full Text] [Related]
11. Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation. Sohraby F; Bagheri M; Aryapour H Methods Mol Biol; 2019; 1903():23-43. PubMed ID: 30547434 [TBL] [Abstract][Full Text] [Related]
12. Local Alignment of Ligand Binding Sites in Proteins for Polypharmacology and Drug Repositioning. Brylinski M Methods Mol Biol; 2017; 1611():109-122. PubMed ID: 28451975 [TBL] [Abstract][Full Text] [Related]
13. Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing. Smith RD; Clark JJ; Ahmed A; Orban ZJ; Dunbar JB; Carlson HA J Mol Biol; 2019 Jun; 431(13):2423-2433. PubMed ID: 31125569 [TBL] [Abstract][Full Text] [Related]
14. Poxvirus-based active immunotherapy synergizes with CTLA-4 blockade to increase survival in a murine tumor model by improving the magnitude and quality of cytotoxic T cells. Foy SP; Mandl SJ; dela Cruz T; Cote JJ; Gordon EJ; Trent E; Delcayre A; Breitmeyer J; Franzusoff A; Rountree RB Cancer Immunol Immunother; 2016 May; 65(5):537-49. PubMed ID: 26961085 [TBL] [Abstract][Full Text] [Related]
16. ImmunoPET Imaging of CTLA-4 Expression in Mouse Models of Non-small Cell Lung Cancer. Ehlerding EB; England CG; Majewski RL; Valdovinos HF; Jiang D; Liu G; McNeel DG; Nickles RJ; Cai W Mol Pharm; 2017 May; 14(5):1782-1789. PubMed ID: 28388076 [TBL] [Abstract][Full Text] [Related]
17. Binding site comparisons for target-centered drug discovery. Konc J Expert Opin Drug Discov; 2019 May; 14(5):445-454. PubMed ID: 30856011 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effects of the immune checkpoint inhibitor CTLA-4 combined with the growth inhibitor lycorine in a mouse model of renal cell carcinoma. Li X; Xu P; Wang C; Xu N; Xu A; Xu Y; Sadahira T; Araki M; Wada K; Matsuura E; Watanabe M; Zheng J; Sun P; Huang P; Nasu Y; Liu C Oncotarget; 2017 Mar; 8(13):21177-21186. PubMed ID: 28416753 [TBL] [Abstract][Full Text] [Related]
19. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Allard B; Pommey S; Smyth MJ; Stagg J Clin Cancer Res; 2013 Oct; 19(20):5626-35. PubMed ID: 23983257 [TBL] [Abstract][Full Text] [Related]
20. Monotherapeutically nonactive CTLA-4 blockade results in greatly enhanced antitumor effects when combined with tumor-targeted superantigens in a B16 melanoma model. Sundstedt A; Celander M; Eriksson H; Törngren M; Hedlund G J Immunother; 2012 May; 35(4):344-53. PubMed ID: 22495392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]