These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 31146268)
1. Theory of angle-dependent marginal Fermi liquid self-energy and its existence at all dopings in cuprates. Ray S; Das T J Phys Condens Matter; 2019 Sep; 31(36):365603. PubMed ID: 31146268 [TBL] [Abstract][Full Text] [Related]
2. Marginal fermi liquid theory in the Hubbard model. Kakehashi Y; Fulde P Phys Rev Lett; 2005 Apr; 94(15):156401. PubMed ID: 15904163 [TBL] [Abstract][Full Text] [Related]
3. Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates. Varma CM Rep Prog Phys; 2016 Aug; 79(8):082501. PubMed ID: 27411298 [TBL] [Abstract][Full Text] [Related]
4. A phenomenological description of an incoherent Fermi liquid near optimal doping in high Tc cuprates. Kim KS; Kim HC J Phys Condens Matter; 2011 Dec; 23(49):495701. PubMed ID: 22101360 [TBL] [Abstract][Full Text] [Related]
5. A unified form of low-energy nodal electronic interactions in hole-doped cuprate superconductors. Reber TJ; Zhou X; Plumb NC; Parham S; Waugh JA; Cao Y; Sun Z; Li H; Wang Q; Wen JS; Xu ZJ; Gu G; Yoshida Y; Eisaki H; Arnold GB; Dessau DS Nat Commun; 2019 Dec; 10(1):5737. PubMed ID: 31844065 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic evidence for Fermi liquid-like energy and temperature dependence of the relaxation rate in the pseudogap phase of the cuprates. Mirzaei SI; Stricker D; Hancock JN; Berthod C; Georges A; van Heumen E; Chan MK; Zhao X; Li Y; Greven M; Barišić N; van der Marel D Proc Natl Acad Sci U S A; 2013 Apr; 110(15):5774-8. PubMed ID: 23536291 [TBL] [Abstract][Full Text] [Related]
7. Transport properties and doping evolution of the Fermi surface in cuprates. Klebel-Knobloch B; Tabiś W; Gala MA; Barišić OS; Sunko DK; Barišić N Sci Rep; 2023 Aug; 13(1):13562. PubMed ID: 37604843 [TBL] [Abstract][Full Text] [Related]
8. Influence of spin and charge fluctuations on spectra of the two-dimensional Hubbard model. Sherman A J Phys Condens Matter; 2018 May; 30(19):195601. PubMed ID: 29583129 [TBL] [Abstract][Full Text] [Related]
9. Momentum-dependent scaling exponents of nodal self-energies measured in strange metal cuprates and modelled using semi-holography. Smit S; Mauri E; Bawden L; Heringa F; Gerritsen F; van Heumen E; Huang YK; Kondo T; Takeuchi T; Hussey NE; Allan M; Kim TK; Cacho C; Krikun A; Schalm K; Stoof HTC; Golden MS Nat Commun; 2024 May; 15(1):4581. PubMed ID: 38811546 [TBL] [Abstract][Full Text] [Related]
10. Self-energy behavior away from the Fermi surface in doped Mott insulators. Merino J; Gunnarsson O; Kotliar G J Phys Condens Matter; 2016 Feb; 28(4):045501. PubMed ID: 26742570 [TBL] [Abstract][Full Text] [Related]
11. Gauge approach to the 'pseudogap' phenomenology of the spectral weight in high Tc cuprates. Marchetti PA; Gambaccini M J Phys Condens Matter; 2012 Nov; 24(47):475601. PubMed ID: 23103555 [TBL] [Abstract][Full Text] [Related]
12. Lifshitz Transition and Non-Fermi Liquid Behavior in Highly Doped Semimetals. Kang K; Kim WJ; Kim D; Kim S; Ji B; Keum DH; Cho S; Kim YM; Lebègue S; Yang H Adv Mater; 2021 Jan; 33(1):e2005742. PubMed ID: 33241603 [TBL] [Abstract][Full Text] [Related]
13. Near doping-independent pocket area from an antinodal Fermi surface instability in underdoped high temperature superconductors. Harrison N Phys Rev Lett; 2011 Oct; 107(18):186408. PubMed ID: 22107657 [TBL] [Abstract][Full Text] [Related]
14. Incoherent transport across the strange-metal regime of overdoped cuprates. Ayres J; Berben M; Čulo M; Hsu YT; van Heumen E; Huang Y; Zaanen J; Kondo T; Takeuchi T; Cooper JR; Putzke C; Friedemann S; Carrington A; Hussey NE Nature; 2021 Jul; 595(7869):661-666. PubMed ID: 34321672 [TBL] [Abstract][Full Text] [Related]
15. Critical metallic phase in the overdoped random Christos M; Joshi DG; Sachdev S; Tikhanovskaya M Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2206921119. PubMed ID: 35858308 [TBL] [Abstract][Full Text] [Related]
16. Breakdown of Landau theory in overdoped cuprates near the onset of superconductivity. Ossadnik M; Honerkamp C; Rice TM; Sigrist M Phys Rev Lett; 2008 Dec; 101(25):256405. PubMed ID: 19113732 [TBL] [Abstract][Full Text] [Related]
17. Quantum criticality and incipient phase separation in the thermodynamic properties of the Hubbard model. Galanakis D; Khatami E; Mikelsons K; Macridin A; Moreno J; Browne DA; Jarrell M Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1941):1670-86. PubMed ID: 21422020 [TBL] [Abstract][Full Text] [Related]
18. High-energy spin and charge excitations in electron-doped copper oxide superconductors. Ishii K; Fujita M; Sasaki T; Minola M; Dellea G; Mazzoli C; Kummer K; Ghiringhelli G; Braicovich L; Tohyama T; Tsutsumi K; Sato K; Kajimoto R; Ikeuchi K; Yamada K; Yoshida M; Kurooka M; Mizuki J Nat Commun; 2014 Apr; 5():3714. PubMed ID: 24762677 [TBL] [Abstract][Full Text] [Related]
19. Hidden itinerant-spin phase in heavily overdoped La(2-x)Sr(x)CuO4 superconductors revealed by dilute Fe doping: a combined neutron scattering and angle-resolved photoemission study. He RH; Fujita M; Enoki M; Hashimoto M; Iikubo S; Mo SK; Yao H; Adachi T; Koike Y; Hussain Z; Shen ZX; Yamada K Phys Rev Lett; 2011 Sep; 107(12):127002. PubMed ID: 22026791 [TBL] [Abstract][Full Text] [Related]
20. Pseudogap in cuprates driven by D-wave flux-phase order proximity effects: a theoretical analysis from Raman and ARPES experiments. Greco A; Bejas M J Phys Condens Matter; 2014 Dec; 26(48):485701. PubMed ID: 25380387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]