These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Angle and frequency dependence of self-energy from spin fluctuation mediated d-wave pairing for high temperature superconductors. Hong SH; Choi HY J Phys Condens Matter; 2013 Sep; 25(36):365702. PubMed ID: 23934792 [TBL] [Abstract][Full Text] [Related]
25. Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point. Lederer S; Schattner Y; Berg E; Kivelson SA Proc Natl Acad Sci U S A; 2017 May; 114(19):4905-4910. PubMed ID: 28439023 [TBL] [Abstract][Full Text] [Related]
26. Non-Fermi liquid phase and linear-in-temperature scattering rate in overdoped two-dimensional Hubbard model. Wú W; Wang X; Tremblay AM Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2115819119. PubMed ID: 35320041 [TBL] [Abstract][Full Text] [Related]
27. Hidden Fermi-liquid Charge Transport in the Antiferromagnetic Phase of the Electron-Doped Cuprate Superconductors. Li Y; Tabis W; Yu G; Barišić N; Greven M Phys Rev Lett; 2016 Nov; 117(19):197001. PubMed ID: 27858438 [TBL] [Abstract][Full Text] [Related]
28. Normal-State Transport Properties of Infinite-Layer Sr Orgiani P; Galdi A; Schlom DG; Maritato L Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630928 [TBL] [Abstract][Full Text] [Related]
29. Pseudogap in cuprates in the loop-current ordered state. Varma CM J Phys Condens Matter; 2014 Dec; 26(50):505701. PubMed ID: 25406917 [TBL] [Abstract][Full Text] [Related]
30. Incoherence-coherence crossover and low-temperature Fermi-liquid-like behavior in AFe2As2 (A = K, Rb, Cs): evidence from electrical transport properties. Xiang ZJ; Wang NZ; Wang AF; Zhao D; Sun ZL; Luo XG; Wu T; Chen XH J Phys Condens Matter; 2016 Oct; 28(42):425702. PubMed ID: 27589485 [TBL] [Abstract][Full Text] [Related]
32. Emergent normal fluid in the superconducting ground state of overdoped cuprates. Ye S; Xu M; Yan H; Li ZX; Zou C; Li X; Hao Z; Yin C; Chen Y; Zhou X; Lee DH; Wang Y Nat Commun; 2024 Jun; 15(1):4939. PubMed ID: 38858381 [TBL] [Abstract][Full Text] [Related]
33. Temperature and doping dependence of the high-energy kink in cuprates. Zemljic MM; Prelovsek P; Tohyama T Phys Rev Lett; 2008 Jan; 100(3):036402. PubMed ID: 18233012 [TBL] [Abstract][Full Text] [Related]
35. Fermiology and electron dynamics of trilayer nickelate La Li H; Zhou X; Nummy T; Zhang J; Pardo V; Pickett WE; Mitchell JF; Dessau DS Nat Commun; 2017 Sep; 8(1):704. PubMed ID: 28951567 [TBL] [Abstract][Full Text] [Related]
36. One-Dimensional Electronic Structure and Suppression of d-Wave Node State in (La(1.28)Nd(0.6)Sr(0.12))CuO(4). Zhou XJ; Bogdanov P; Kellar SA; Noda T; Eisaki H; Uchida S; Hussain Z; Shen Z Science; 1999 Oct; 286(5438):268-272. PubMed ID: 10514366 [TBL] [Abstract][Full Text] [Related]
37. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective. Xu W; Haule K; Kotliar G Phys Rev Lett; 2013 Jul; 111(3):036401. PubMed ID: 23909344 [TBL] [Abstract][Full Text] [Related]
38. Quasiparticle liquid in the highly overdoped Bi(2)Sr(2)CaCu(2)O(8+delta). Yusof ZM; Wells BO; Valla T; Fedorov AV; Johnson PD; Li Q; Kendziora C; Jian S; Hinks DG Phys Rev Lett; 2002 Apr; 88(16):167006. PubMed ID: 11955253 [TBL] [Abstract][Full Text] [Related]
39. Fermi Surface Reconstruction and Drop in the Hall Number due to Spiral Antiferromagnetism in High-T_{c} Cuprates. Eberlein A; Metzner W; Sachdev S; Yamase H Phys Rev Lett; 2016 Oct; 117(18):187001. PubMed ID: 27835021 [TBL] [Abstract][Full Text] [Related]
40. Realistic estimates of superconducting properties for the cuprates: reciprocal-space diagrammatic expansion combined with variational approach. Fidrysiak M; Zegrodnik M; Spałek J J Phys Condens Matter; 2018 Nov; 30(47):475602. PubMed ID: 30382027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]