These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31146307)

  • 1. The impacts of γ-Fe
    Wang Y; Wang S; Xu M; Xiao L; Dai Z; Li J
    Environ Pollut; 2019 Jun; 249():1011-1018. PubMed ID: 31146307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure.
    Wang Y; Hu J; Dai Z; Li J; Huang J
    Plant Physiol Biochem; 2016 Nov; 108():353-360. PubMed ID: 27518375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological of biochar and α-Fe
    Wang Y; Zou Z; Su X; Wan F; Zhou Y; Lei Z; Yi L; Dai Z; Li J
    J Nanobiotechnology; 2021 Dec; 19(1):442. PubMed ID: 34930295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction mechanisms between α-Fe
    Li J; Hu J; Xiao L; Wang Y; Wang X
    Sci Total Environ; 2018 Jun; 625():677-685. PubMed ID: 29306155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.
    Hu J; Guo H; Li J; Gan Q; Wang Y; Xing B
    Environ Pollut; 2017 Feb; 221():199-208. PubMed ID: 27916492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological impacts of zero valent iron, Fe
    Li M; Zhang P; Adeel M; Guo Z; Chetwynd AJ; Ma C; Bai T; Hao Y; Rui Y
    Environ Pollut; 2021 Jan; 269():116134. PubMed ID: 33290949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of γ-Fe
    Hu J; Guo H; Li J; Wang Y; Xiao L; Xing B
    J Nanobiotechnology; 2017 Jul; 15(1):51. PubMed ID: 28693496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Root and Foliar-Applied Iron Oxide Nanoparticles (α-Fe
    Yousaf N; Ishfaq M; Qureshi HA; Saleem A; Yang H; Sardar MF; Zou C
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Analysis of Physiological Impact of
    Hu J; Wu C; Ren H; Wang Y; Li J; Huang J
    J Nanosci Nanotechnol; 2018 Jan; 18(1):743-752. PubMed ID: 29768904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).
    Li J; Hu J; Ma C; Wang Y; Wu C; Huang J; Xing B
    Chemosphere; 2016 Sep; 159():326-334. PubMed ID: 27314633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compound repair effect of carbon dots and Fe
    Yang D; Li J; Cheng Y; Wan F; Jia R; Wang Y
    Plant Physiol Biochem; 2019 Sep; 142():137-142. PubMed ID: 31279861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study on the mixture repairing effect of biochar and nano iron oxide on toxicity of Cd toward muskmelon.
    Zou Z; Wang Y; Huang J; Lei Z; Wan F; Dai Z; Yi L; Li J
    Environ Pollut; 2020 Nov; 266(Pt 1):115371. PubMed ID: 32818669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses.
    Ates M; Demir V; Arslan Z; Kaya H; Yılmaz S; Camas M
    Aquat Toxicol; 2016 Aug; 177():22-32. PubMed ID: 27232508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maghemite (γ-Fe
    Chen Z; Zhang Y; Luo Q; Wang L; Liu S; Peng Y; Wang H; Shen L; Li Q; Wang Y
    J Environ Sci (China); 2019 Apr; 78():193-203. PubMed ID: 30665638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc oxide and ferric oxide nanoparticles combination increase plant growth, yield, and quality of soybean under semiarid region.
    Yadav A; Babu S; Krishnan P; Kaur B; Bana RS; Chakraborty D; Kumar V; Joshi B; Lal SK
    Chemosphere; 2024 Mar; 352():141432. PubMed ID: 38368965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron Oxide Nanoparticles as a Potential Iron Fertilizer for Peanut (Arachis hypogaea).
    Rui M; Ma C; Hao Y; Guo J; Rui Y; Tang X; Zhao Q; Fan X; Zhang Z; Hou T; Zhu S
    Front Plant Sci; 2016; 7():815. PubMed ID: 27375665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BTH treatment caused physiological, biochemical and proteomic changes of muskmelon (Cucumis melo L.) fruit during ripening.
    Li X; Bi Y; Wang J; Dong B; Li H; Gong D; Zhao Y; Tang Y; Yu X; Shang Q
    J Proteomics; 2015 Apr; 120():179-93. PubMed ID: 25779462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate and impact of maghemite (γ-Fe
    Tombuloglu H; Albenayyan N; Slimani Y; Akhtar S; Tombuloglu G; Almessiere M; Baykal A; Ercan I; Sabit H; Manikandan A
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):4710-4721. PubMed ID: 34414536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of elevated rhizosphere CO2 concentration on the photosynthetic characteristics, yield, and quality of muskmelon].
    Liu YL; Sun ZP; Li TL; Gu FY; He Y
    Ying Yong Sheng Tai Xue Bao; 2013 Oct; 24(10):2871-7. PubMed ID: 24483082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.
    Li J; Chang PR; Huang J; Wang Y; Yuan H; Ren H
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5561-7. PubMed ID: 23882795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.