BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31146327)

  • 1. Single Particle Combustion of Pre-Stressed Aluminum.
    Hill KJ; Pantoya ML; Washburn E; Kalman J
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly reactive energetic films by pre-stressing nano-aluminum particles.
    Bello MN; Williams AM; Levitas VI; Tamura N; Unruh DK; Warzywoda J; Pantoya ML
    RSC Adv; 2019 Dec; 9(69):40607-40617. PubMed ID: 35542678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre-stressing micron-scale aluminum core-shell particles to improve reactivity.
    Levitas VI; McCollum J; Pantoya M
    Sci Rep; 2015 Jan; 5():7879. PubMed ID: 25597747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser dispersion and ignition of metal fuel particles.
    Abdel-Hafez AA; Brodt MW; Carney JR; Lightstone JM
    Rev Sci Instrum; 2011 Jun; 82(6):064101. PubMed ID: 21721708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combustion Characteristics of Physically Mixed 40 nm Aluminum/Copper Oxide Nanothermites Using Laser Ignition.
    Saceleanu F; Idir M; Chaumeix N; Wen JZ
    Front Chem; 2018; 6():465. PubMed ID: 30356693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Reactivity of Perfluoropolyether-Functionalized Aluminum Nanoparticles by the Reaction Interface Fuel-Oxidizer Ratio.
    Wu C; Nie J; Li S; Wang W; Pan Q; Guo X
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Size and Prestressing of Aluminum Particles on the Oxidation of Levitated
    Lucas M; Brotton SJ; Min A; Woodruff C; Pantoya ML; Kaiser RI
    J Phys Chem A; 2020 Feb; 124(8):1489-1507. PubMed ID: 32065522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Studies on Thermal Oxidation and Laser Ignition Properties of Al-Mg-Li Powders.
    Lu Y; Ma K; Guo C; Jiang M; Wu C; Li S; Hu S
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles.
    Wang H; Ren H; Yan T; Li Y; Zhao W
    Sci Rep; 2021 Jan; 11(1):738. PubMed ID: 33436998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering High-Performance Hypergolic Propellant by Synergistic Contribution of Metal-Organic Framework Shell and Aluminum Core.
    Wang C; Li C; Duan Z; Wang ZF; Wang QY; Zang SQ
    Small; 2024 Jun; 20(26):e2310970. PubMed ID: 38243848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation and ignition of aluminum nanomaterials.
    Noor F; Zhang H; Korakianitis T; Wen D
    Phys Chem Chem Phys; 2013 Dec; 15(46):20176-88. PubMed ID: 24162275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-Situ Thermochemical Shock-Induced Stress at the Metal/Oxide Interface Enhances Reactivity of Aluminum Nanoparticles.
    Biswas P; Xu F; Ghildiyal P; Zachariah MR
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35666986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sizing and burn time measurements of micron-sized metal powders.
    Gill RJ; Mohan S; Dreizin EL
    Rev Sci Instrum; 2009 Jun; 80(6):064101. PubMed ID: 19566214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile Thermal and Optical Ignition of Silicon Nanoparticles and Micron Particles.
    Huang S; Parimi VS; Deng S; Lingamneni S; Zheng X
    Nano Lett; 2017 Oct; 17(10):5925-5930. PubMed ID: 28873319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activating Aluminum Reactivity with Fluoropolymer Coatings for Improved Energetic Composite Combustion.
    McCollum J; Pantoya ML; Iacono ST
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18742-9. PubMed ID: 26263844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and Characterization of Silicon-Metal Fluoride Reactive Composites.
    Valluri SK; Schoenitz M; Dreizin E
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Nitrogen Dioxide on the Oxidation of Levitated
    Brotton SJ; Kaiser RI
    J Phys Chem A; 2021 Apr; 125(13):2727-2742. PubMed ID: 33769056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfluoroalkyl-Functionalized Graphene Oxide as a Multifunctional Additive for Promoting the Energetic Performance of Aluminum.
    Jiang Y; Wang H; Baek J; Ka D; Huynh AH; Wang Y; Zachariah MR; Zheng X
    ACS Nano; 2022 Sep; 16(9):14658-14665. PubMed ID: 36099637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Ignition and Combustion Performances of Solid Propellants Incorporating Al Particles Inside Oxidizers.
    Xu R; Yu M; Xue Z; Zhang H; Yan QL
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56442-56453. PubMed ID: 37975864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Moisture on the Ignition and Combustion Characteristics of Lignite Particles: Modeling and Experimental Study.
    Li L; Bai X; Qu C; Zhou K; Sun Y
    ACS Omega; 2022 Oct; 7(39):34912-34920. PubMed ID: 36211052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.