These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31146449)

  • 1. Compression Test of Soft Food Gels Using a Soft Machine with an Artificial Tongue.
    Kohyama K; Ishihara S; Nakauma M; Funami T
    Foods; 2019 May; 8(6):. PubMed ID: 31146449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compression test of soft gellan gels using a soft machine equipped with a transparent artificial tongue.
    Kohyama K
    J Texture Stud; 2020 Aug; 51(4):612-621. PubMed ID: 32067242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a balloon-type pressure sensor in texture evaluation of tongue-crushable foods.
    Kohyama K
    J Texture Stud; 2022 Jun; 53(3):357-365. PubMed ID: 35322422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Texture contrast: Ultrasonic characterization of stacked gels' deformation during compression on a biomimicking tongue.
    Srivastava R; Stieger M; Scholten E; Souchon I; Mathieu V
    Curr Res Food Sci; 2021; 4():449-459. PubMed ID: 34308369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tongue pressure modulation for initial gel consistency in a different oral strategy.
    Yokoyama S; Hori K; Tamine K; Fujiwara S; Inoue M; Maeda Y; Funami T; Ishihara S; Ono T
    PLoS One; 2014; 9(3):e91920. PubMed ID: 24643054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fracture properties of gels on tongue pressure during different phases of squeezing and swallowing.
    Murakami K; Tokuda Y; Hori K; Minagi Y; Uehara F; Okawa J; Ishihara S; Nakauma M; Funami T; Maeda Y; Ikebe K; Ono T
    J Texture Stud; 2021 Jun; 52(3):303-313. PubMed ID: 33619744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between maximal isometric tongue pressure and limit of fracture force of gels in tongue squeezing.
    Murakami K; Kasakawa N; Hori K; Kosaka T; Nakano K; Ishihara S; Nakauma M; Funami T; Ikebe K; Ono T
    J Oral Rehabil; 2024 Mar; 51(3):574-580. PubMed ID: 37964441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological characteristics of binary composite gels of wheat flour and high amylose corn starch.
    Shahsavani Mojarrad L; Rafe A
    J Texture Stud; 2018 Jun; 49(3):320-327. PubMed ID: 28963723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of food properties and chewing condition on the electromyographic activity of the posterior tongue.
    Manda Y; Kodama N; Maeda N; Minagi S
    J Oral Rehabil; 2019 Jun; 46(6):511-517. PubMed ID: 30724370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of tongue pressure production, hyoid movement, and suprahyoid muscle activity during squeezing of gels.
    Murakami K; Hori K; Minagi Y; Uehara F; Salazar SE; Ishihara S; Nakauma M; Funami T; Ikebe K; Maeda Y; Ono T
    Arch Oral Biol; 2020 Mar; 111():104631. PubMed ID: 31869725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial saliva-induced structural breakdown of rice flour gels under simulated chewing conditions.
    Kim Y; Oh IK; Kim H; Lee S
    Food Sci Biotechnol; 2019 Apr; 28(2):387-393. PubMed ID: 30956850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food transport and bolus formation during complete feeding sequences on foods of different initial consistency.
    Hiiemae KM; Palmer JB
    Dysphagia; 1999; 14(1):31-42. PubMed ID: 9828272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations of sensations of hardness and springiness of agar and gelatin gels with mechanical properties in human participants.
    Nakatomi C; Hsu CC; Ono K
    J Oral Biosci; 2023 Dec; 65(4):316-323. PubMed ID: 37689308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of postcompressional textural tests to evaluate the mechanical properties of medicated chewing gum tablets with high drug loadings.
    Al Hagbani T; Nazzal S
    J Texture Stud; 2018 Feb; 49(1):30-37. PubMed ID: 28776678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disintegration kinetics of food gels during gastric digestion and its role on gastric emptying: an in vitro analysis.
    Guo Q; Ye A; Lad M; Ferrua M; Dalgleish D; Singh H
    Food Funct; 2015 Mar; 6(3):756-64. PubMed ID: 25562505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [International Classification Systems for Texture-Modified Foods].
    Wang IC
    Hu Li Za Zhi; 2020 Aug; 67(4):24-32. PubMed ID: 32748376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gellan gum fluid gels for topical administration of diclofenac.
    Mahdi MH; Conway BR; Mills T; Smith AM
    Int J Pharm; 2016 Dec; 515(1-2):535-542. PubMed ID: 27789369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Compression Force on Mechanical, Textural, Release and Chewing Perception Properties of Compressible Medicated Chewing Gums.
    Maslii Y; Kolisnyk T; Ruban O; Yevtifieieva O; Gureyeva S; Goy A; Kasparaviciene G; Kalveniene Z; Bernatoniene J
    Pharmaceutics; 2021 Oct; 13(11):. PubMed ID: 34834223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using ultrasound to characterize the tongue-food interface: An in vitro study examining the impact of surface roughness and lubrication.
    Mantelet M; Restagno F; Souchon I; Mathieu V
    Ultrasonics; 2020 Apr; 103():106095. PubMed ID: 32044566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination between the masticatory and tongue muscles as seen with different foods in consistency and in reflex activities during natural chewing.
    Kakizaki Y; Uchida K; Yamamura K; Yamada Y
    Brain Res; 2002 Mar; 929(2):210-7. PubMed ID: 11864626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.