BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31146612)

  • 41. Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration.
    Mehat MS; Sundaram V; Ripamonti C; Robson AG; Smith AJ; Borooah S; Robinson M; Rosenthal AN; Innes W; Weleber RG; Lee RWJ; Crossland M; Rubin GS; Dhillon B; Steel DHW; Anglade E; Lanza RP; Ali RR; Michaelides M; Bainbridge JWB
    Ophthalmology; 2018 Nov; 125(11):1765-1775. PubMed ID: 29884405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FEATURES OF THE MACULA AND CENTRAL VISUAL FIELD AND FIXATION PATTERN IN PATIENTS WITH RETINITIS PIGMENTOSA.
    Sayman Muslubas I; Karacorlu M; Arf S; Hocaoglu M; Ersoz MG
    Retina; 2018 Feb; 38(2):424-431. PubMed ID: 28178068
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fixation behavior in macular dystrophy assessed by microperimetry.
    Chiang WY; Lee JJ; Chen YH; Chen CH; Chen YJ; Wu PC; Fang PC; Kuo HK
    Graefes Arch Clin Exp Ophthalmol; 2018 Aug; 256(8):1403-1410. PubMed ID: 29948177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microperimetry for geographic atrophy secondary to age-related macular degeneration.
    Csaky KG; Patel PJ; Sepah YJ; Birch DG; Do DV; Ip MS; Guymer RH; Luu CD; Gune S; Lin H; Ferrara D
    Surv Ophthalmol; 2019; 64(3):353-364. PubMed ID: 30703401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microperimetry and OCT findings in female carriers of choroideremia.
    Thobani A; Anastasakis A; Fishman GA
    Ophthalmic Genet; 2010 Dec; 31(4):235-9. PubMed ID: 21067487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characteristics of the preferred retinal loci of better and worse seeing eyes of patients with a central scotoma.
    Kisilevsky E; Tarita-Nistor L; González EG; Mandelcorn MS; Brent MH; Markowitz SN; Steinbach MJ
    Can J Ophthalmol; 2016 Oct; 51(5):362-367. PubMed ID: 27769327
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fixation behavior in primary open angle glaucoma at early and moderate stage assessed by the MicroPerimeter MP-1.
    Shi Y; Liu M; Wang X; Zhang C; Huang P
    J Glaucoma; 2013 Feb; 22(2):169-73. PubMed ID: 21946547
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimisation of dark adaptation time required for mesopic microperimetry.
    Han RC; Gray JM; Han J; Maclaren RE; Jolly JK
    Br J Ophthalmol; 2019 Aug; 103(8):1092-1098. PubMed ID: 30269100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MAPPING THE DENSE SCOTOMA AND ITS ENLARGEMENT IN STARGARDT DISEASE.
    Bernstein A; Sunness JS; Applegate CA; Tegins EO
    Retina; 2016 Sep; 36(9):1741-50. PubMed ID: 26909568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping of central visual function by microperimetry and autofluorescence in patients with Best's vitelliform dystrophy.
    Jarc-Vidmar M; Popovic P; Hawlina M
    Eye (Lond); 2006 Jun; 20(6):688-96. PubMed ID: 15951755
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Microperimetry in age-related macular degeneration].
    Querques G; Forte R; Longo C; Carrillo P; Laculli C; Soubrane G; Delle Noci N
    J Fr Ophtalmol; 2008 May; 31(5):515-21. PubMed ID: 18641585
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High myopic patients with and without foveoschisis: morphological and functional characteristics.
    Nebbioso M; Lambiase A; Gharbiya M; Bruscolini A; Alisi L; Bonfiglio V
    Doc Ophthalmol; 2020 Dec; 141(3):227-236. PubMed ID: 32323040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multimodal analysis of the Preferred Retinal Location and the Transition Zone in patients with Stargardt Disease.
    Verdina T; Greenstein VC; Sodi A; Tsang SH; Burke TR; Passerini I; Allikmets R; Virgili G; Cavallini GM; Rizzo S
    Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1307-1317. PubMed ID: 28365912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Static and dynamic retinal fixation stability in microperimetry.
    Longhin E; Convento E; Pilotto E; Bonin G; Vujosevic S; Kotsafti O; Midena E
    Can J Ophthalmol; 2013 Oct; 48(5):375-80. PubMed ID: 24093183
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morpho-functional analysis of Stargardt Disease for reading.
    Sasso P; Scupola A; Silvestri V; Amore FM; Abed E; Calandriello L; Grimaldi G; Caporossi A
    Can J Ophthalmol; 2017 Jun; 52(3):287-294. PubMed ID: 28576211
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Macular function and morphologic features in juvenile stargardt disease: longitudinal study.
    Testa F; Melillo P; Di Iorio V; Orrico A; Attanasio M; Rossi S; Simonelli F
    Ophthalmology; 2014 Dec; 121(12):2399-405. PubMed ID: 25097154
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visual Cortex Activation in Patients With Stargardt Disease.
    Melillo P; Prinster A; Di Iorio V; Olivo G; D'Alterio FM; Cocozza S; Orrico A; Quarantelli M; Testa F; Brunetti A; Simonelli F
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1503-1511. PubMed ID: 29625472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mesopic Pelli-Robson contrast sensitivity and MP-1 microperimetry in healthy ageing and age-related macular degeneration.
    Maynard ML; Zele AJ; Feigl B
    Acta Ophthalmol; 2016 Dec; 94(8):e772-e778. PubMed ID: 27225020
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Examining the added value of microperimetry and low luminance deficit for predicting progression in age-related macular degeneration.
    Wu Z; Luu CD; Hodgson LA; Caruso E; Chen FK; Chakravarthy U; Arnold JJ; Heriot WJ; Runciman J; Guymer RH
    Br J Ophthalmol; 2021 May; 105(5):711-715. PubMed ID: 32606079
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inferred retinal sensitivity in recessive Stargardt disease using machine learning.
    Müller PL; Odainic A; Treis T; Herrmann P; Tufail A; Holz FG; Pfau M
    Sci Rep; 2021 Jan; 11(1):1466. PubMed ID: 33446864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.