BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31146840)

  • 1. Regioselectively substituted cellulose mixed esters synthesized by two-steps route to understand chiral recognition mechanism and fabricate high-performance chiral stationary phases.
    Yin C; Zhang J; Chang L; Zhang M; Yang T; Zhang X; Zhang J
    Anal Chim Acta; 2019 Sep; 1073():90-98. PubMed ID: 31146840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and HPLC chiral recognition of regioselectively carbamoylated cellulose derivatives.
    Tang S; Li X; Wang F; Liu G; Li Y; Pan F
    Chirality; 2012 Feb; 24(2):167-73. PubMed ID: 22213581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of cellulose carbamates bearing regioselective substituents at 2,3- and 6-positions for efficient chromatographic enantioseparation.
    Shen J; Wang F; Bi W; Liu B; Liu S; Okamoto Y
    J Chromatogr A; 2018 Oct; 1572():54-61. PubMed ID: 30146373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and Enantioseparation Ability of Xylan Bisphenylcarbamate Derivatives as Chiral Stationary Phases in HPLC.
    Li G; Shen J; Li Q; Okamoto Y
    Chirality; 2015 Aug; 27(8):518-22. PubMed ID: 26039871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.
    Tang S; Bin Q; Chen W; Bai ZW; Huang SH
    J Chromatogr A; 2016 Apr; 1440():112-122. PubMed ID: 26931425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Homogeneous synthesis of cellulose phenylcarbamates and evaluation of their enantioseparation capabilities].
    Yin C; Yang T; Zhang J; Zhang J
    Se Pu; 2020 Apr; 38(4):476-483. PubMed ID: 34213231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and chiral recognition of amylose derivatives bearing regioselective phenylcarbamate substituents at 2,6- and 3-positions for high-performance liquid chromatography.
    Shen J; Li G; Yang Z; Okamoto Y
    J Chromatogr A; 2016 Oct; 1467():199-205. PubMed ID: 27452988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and evaluation of regioselectively substituted amylose derivatives for chiral separations.
    Tang S; Jin Z; Sun B; Wang F; Tang W
    Chirality; 2017 Sep; 29(9):512-521. PubMed ID: 28635058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of substituted phenylcarbamates of N-cyclobutylformylated chitosan and their application as chiral selectors in enantioseparation.
    Zhang J; Wang XC; Chen W; Bai ZW
    Analyst; 2016 Jul; 141(14):4470-80. PubMed ID: 27191623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral recognition ability of amylose derivatives bearing regioselectively different carbamate pendants at 2,3- and 6-positions.
    Dai X; Bi W; Sun M; Wang F; Shen J; Okamoto Y
    Carbohydr Polym; 2019 Aug; 218():30-36. PubMed ID: 31221334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and chiral recognition of novel amylose derivatives containing regioselectively benzoate and phenylcarbamate groups.
    Shen J; Ikai T; Okamoto Y
    J Chromatogr A; 2010 Feb; 1217(7):1041-7. PubMed ID: 19647833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantiomer separation on novel cellulose derivatives bearing regioselective phenylcarbamate groups.
    Tang S; Wang F; Yan Z; Huang L
    J Sep Sci; 2021 Jan; 44(2):489-496. PubMed ID: 33135309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantiomeric discrimination of pyrethroic acid esters on polysaccharide derived chiral stationary phases.
    Kim BH; Lee SU; Kim KT; Lee JY; Choi NH; Han YK; Ok JH
    Chirality; 2003 Mar; 15(3):276-83. PubMed ID: 12582995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioseparation characteristics of biselector chiral stationary phases based on derivatives of cellulose and amylose.
    Wang ZQ; Liu JD; Chen W; Bai ZW
    J Chromatogr A; 2014 Jun; 1346():57-68. PubMed ID: 24792697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of chitosan 3,6-diphenylcarbamate-2-urea derivatives and their applications as chiral stationary phases for high-performance liquid chromatography.
    Zhang L; Shen J; Zuo W; Okamoto Y
    J Chromatogr A; 2014 Oct; 1365():86-93. PubMed ID: 25262030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of chiral stationary phases with radical polymerization reaction of cellulose phenylcarbamate derivatives and vinylized silica gel.
    Chen X; Qin F; Liu Y; Huang X; Zou H
    J Chromatogr A; 2004 Apr; 1034(1-2):109-16. PubMed ID: 15116919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral discrimination with regioselectively substituted cellulose esters as chiral stationary phases.
    Kasuya N; Nakashima J; Kubo T; Sawatari A; Habu N
    Chirality; 2000 Oct; 12(9):670-4. PubMed ID: 10984741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioseparation using ortho- or meta-substituted phenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography.
    Shen J; Zhao Y; Inagaki S; Yamamoto C; Shen Y; Liu S; Okamoto Y
    J Chromatogr A; 2013 Apr; 1286():41-6. PubMed ID: 23506702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Preparation and evaluation of amylose and cellulose tris (3-trifluoromethylphenylcarbamates)-based chiral stationary phases].
    Jin Z; Hu F; Wang Y; Liu G; Wang F; Pan F; Tang S
    Se Pu; 2011 Nov; 29(11):1087-92. PubMed ID: 22393696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-depth characterization of six cellulose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases in supercritical fluid chromatography.
    Khater S; Zhang Y; West C
    J Chromatogr A; 2013 Aug; 1303():83-93. PubMed ID: 23838300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.