These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31146906)

  • 1. Quantitative analysis of forebrain pallial morphology in monotremes and comparison with that in therians.
    Ashwell KWS; Gurovich Y
    Zoology (Jena); 2019 Jun; 134():38-57. PubMed ID: 31146906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of cerebellar morphology in monotreme, metatherian and eutherian mammals.
    Ashwell KWS
    Zoology (Jena); 2020 Apr; 139():125753. PubMed ID: 32086142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype.
    Ferner K; Schultz JA; Zeller U
    J Anat; 2017 Dec; 231(6):798-822. PubMed ID: 28960296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical Analysis of the Cerebral Cortex in Diprotodontids (Marsupialia; Australidelphia) and Comparison with Eutherian Brains.
    Jyothilakshmi TK; Gurovich Y; Ashwell KWS
    Zoology (Jena); 2020 Dec; 143():125845. PubMed ID: 33059305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The claustrum is not missing from all monotreme brains.
    Ashwell KW; Hardman C; Paxinos G
    Brain Behav Evol; 2004; 64(4):223-41. PubMed ID: 15319553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pretectal nuclei in two monotremes: the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus).
    Ashwell KW; Paxinos G
    Brain Struct Funct; 2007 Dec; 212(3-4):359-69. PubMed ID: 17717686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An evolutionary view of the male reproductive tract and sperm maturation in a monotreme mammal--the echidna, Tachyglossus aculeatus.
    Bedford JM; Rifkin JM
    Am J Anat; 1979 Oct; 156(2):207-30. PubMed ID: 506951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution.
    Schultz JA; Zeller U; Luo ZX
    J Morphol; 2017 Feb; 278(2):236-263. PubMed ID: 27889918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apparent absence of claustrum in monotremes: implications for forebrain evolution in amniotes.
    Butler AB; Molnár Z; Manger PR
    Brain Behav Evol; 2002; 60(4):230-40. PubMed ID: 12457081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anterior commissure versus corpus callosum: A quantitative comparison across mammals.
    Ashwell KWS
    Zoology (Jena); 2016 Apr; 119(2):126-136. PubMed ID: 26961186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Diversity and Evolution of Bitter Taste Receptors in Egg-Laying Mammals.
    Itoigawa A; Hayakawa T; Zhou Y; Manning AD; Zhang G; Grutzner F; Imai H
    Mol Biol Evol; 2022 Jun; 39(6):. PubMed ID: 35652727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of the monotreme fossil record and comparison of palaeontological and molecular data.
    Musser AM
    Comp Biochem Physiol A Mol Integr Physiol; 2003 Dec; 136(4):927-42. PubMed ID: 14667856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical analysis of pancreatic islets of platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus ssp.).
    He C; Myers MA; Forbes BE; Grützner F
    J Anat; 2015 Apr; 226(4):373-80. PubMed ID: 25682842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent origins of middle ear bones in monotremes and therians.
    Rich TH; Hopson JA; Musser AM; Flannery TF; Vickers-Rich P
    Science; 2005 Feb; 307(5711):910-4. PubMed ID: 15705848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of somatosensory cortex development in metatherians and monotremes, with comparison to the laboratory rat.
    Ashwell KW
    Somatosens Mot Res; 2015; 32(2):87-98. PubMed ID: 25393314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung development of monotremes: evidence for the mammalian morphotype.
    Ferner K; Zeller U; Renfree MB
    Anat Rec (Hoboken); 2009 Feb; 292(2):190-201. PubMed ID: 19051249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hypothalamic supraoptic and paraventricular nuclei of the echidna and platypus.
    Ashwell KW; Lajevardi SE; Cheng G; Paxinos G
    Brain Behav Evol; 2006; 68(4):197-217. PubMed ID: 16809908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Description of a cranial endocast from a fossil platypus, Obdurodon dicksoni (Monotremata, Ornithorhynchidae), and the relevance of endocranial characters to monotreme monophyly.
    Macrini TE; Rowe T; Archer M
    J Morphol; 2006 Aug; 267(8):1000-15. PubMed ID: 16710845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain gangliosides in monotremes, marsupials and placentals: phylogenetic and thermoregulatory aspects.
    Rahmann H; Hilbig R; Geiser F
    Comp Biochem Physiol B; 1986; 83(1):151-7. PubMed ID: 3943299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular phylogeny and evolution of the neurotrophins from monotremes and marsupials.
    Kullander K; Carlson B; Hallböök F
    J Mol Evol; 1997 Sep; 45(3):311-21. PubMed ID: 9302326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.