These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31146994)

  • 21. Polylactide based nanostructured biomaterials and their applications.
    Singh S; Ray SS
    J Nanosci Nanotechnol; 2007 Aug; 7(8):2596-615. PubMed ID: 17685274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications.
    Gopi D; Nithiya S; Shinyjoy E; Kavitha L
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 92():194-200. PubMed ID: 22446767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells.
    Shi Z; Huang X; Cai Y; Tang R; Yang D
    Acta Biomater; 2009 Jan; 5(1):338-45. PubMed ID: 18753024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Debye function analysis and 2D imaging of nanoscaled engineered bone.
    Guagliardi A; Cedola A; Giannini C; Ladisa M; Cervellino A; Sorrentino A; Lagomarsino S; Cancedda R; Mastrogiacomo M
    Biomaterials; 2010 Nov; 31(32):8289-98. PubMed ID: 20692700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.
    Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB
    Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of critical size bone defects (CSD) in rabbits.
    Huber FX; Berger I; McArthur N; Huber C; Kock HP; Hillmeier J; Meeder PJ
    J Mater Sci Mater Med; 2008 Jan; 19(1):33-8. PubMed ID: 17569013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites.
    Gabriel LP; Santos ME; Jardini AL; Bastos GN; Dias CG; Webster TJ; Maciel Filho R
    Nanomedicine; 2017 Jan; 13(1):201-208. PubMed ID: 27720929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of calcium phosphate based functional gradient bioceramics.
    Kon M; Ishikawa K; Miyamoto Y; Asaoka K
    Biomaterials; 1995 Jun; 16(9):709-14. PubMed ID: 7578775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyapatite ceramic bodies with tailored mechanical properties for different applications.
    Rodríguez-Lorenzo LM; Vallet-Regí M; Ferreira JM; Ginebra MP; Aparicio C; Planell JA
    J Biomed Mater Res; 2002 Apr; 60(1):159-66. PubMed ID: 11835171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical analysis of the behavior of fracture toughness of compound bioceramic artificial bone.
    Xu S; Xu R; Li R
    Artif Organs; 2011 Dec; 35(12):1160-8. PubMed ID: 21810112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wettability and surface free energy of polarised ceramic biomaterials.
    Nakamura M; Hori N; Namba S; Toyama T; Nishimiya N; Yamashita K
    Biomed Mater; 2015 Jan; 10(1):011001. PubMed ID: 25585714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopical imaging of hydroxyapatite/mica composite and packed hydroxyapatite structure--an atomic force microscopy investigation.
    Nordström EG; Yokobori AT; Yokobori T; Aizawa Y
    Biomed Mater Eng; 1997; 7(5):285-9. PubMed ID: 9457379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biocompatible hydroxyapatite nanoparticles as a redox luminescence switch.
    Liu H; Xi P; Xie G; Chen F; Li Z; Bai D; Zeng Z
    J Biol Inorg Chem; 2011 Dec; 16(8):1135-40. PubMed ID: 21769606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity.
    Wijesinghe WP; Mantilaka MM; Premalal EV; Herath HM; Mahalingam S; Edirisinghe M; Rajapakse RP; Rajapakse RM
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():83-90. PubMed ID: 25063096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Synthesis and characteristics of porous hydroxyapatite bioceramics].
    Niu J; Zhang Z; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):302-5. PubMed ID: 12224306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro stability of biphasic calcium phosphate ceramics.
    Kohri M; Miki K; Waite DE; Nakajima H; Okabe T
    Biomaterials; 1993; 14(4):299-304. PubMed ID: 8386558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanocrystalline hydroxyapatite prepared under various pH conditions.
    Palanivelu R; Mary Saral A; Ruban Kumar A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():37-41. PubMed ID: 24820320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics.
    Pu Y; Huang Y; Qi S; Chen C; Seo HJ
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():126-30. PubMed ID: 26117746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering.
    Nga NK; Giang LT; Huy TQ; Viet PH; Migliaresi C
    Colloids Surf B Biointerfaces; 2014 Apr; 116():666-73. PubMed ID: 24274938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.