BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 31147056)

  • 1. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications.
    Kaur M; Singh K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():844-862. PubMed ID: 31147056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrosion and surface modification on biocompatible metals: A review.
    Asri RIM; Harun WSW; Samykano M; Lah NAC; Ghani SAC; Tarlochan F; Raza MR
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1261-1274. PubMed ID: 28532004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control.
    Castellani C; Lindtner RA; Hausbrandt P; Tschegg E; Stanzl-Tschegg SE; Zanoni G; Beck S; Weinberg AM
    Acta Biomater; 2011 Jan; 7(1):432-40. PubMed ID: 20804867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review.
    Li J; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    J Mech Behav Biomed Mater; 2020 May; 105():103671. PubMed ID: 32090892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry.
    Ottria L; Lauritano D; Andreasi Bassi M; Palmieri A; Candotto V; Tagliabue A; Tettamanti L
    J Biol Regul Homeost Agents; 2018; 32(2 Suppl. 1):81-90. PubMed ID: 29460522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium alloys in total joint replacement--a materials science perspective.
    Long M; Rack HJ
    Biomaterials; 1998 Sep; 19(18):1621-39. PubMed ID: 9839998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical review on the biocompatibility of surface-treated Ti-alloys for joint replacement applications.
    Jain S; Parashar V
    Expert Rev Med Devices; 2022 Sep; 19(9):699-719. PubMed ID: 36240236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of biomaterials.
    Lemons JE; Lucas LC
    J Arthroplasty; 1986; 1(2):143-7. PubMed ID: 3559583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [RESEARCH PROGRESS OF MAGNESIUM AND MAGNESIUM ALLOYS IMPLANTS IN ORTHOPEDICS].
    Yang J; Xu Y; He X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Dec; 30(12):1562-1566. PubMed ID: 29786352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomineralisation with Saos-2 bone cells on TiSiN sputtered Ti alloys.
    V V AT; Bendavid A; Martin PJ; Vaithilingam V; Bean PA; Evans MDM; Subramanian B
    Colloids Surf B Biointerfaces; 2017 Jul; 155():1-10. PubMed ID: 28384526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility and biofunctionality of implanted materials.
    Cook SD; Dalton JE
    Alpha Omegan; 1992; 85(4):41-7. PubMed ID: 1308341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synergistic effect of TiO
    Jiang N; Du P; Qu W; Li L; Liu Z; Zhu S
    Int J Nanomedicine; 2016; 11():4719-4733. PubMed ID: 27695328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications.
    Agarwal S; Curtin J; Duffy B; Jaiswal S
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():948-963. PubMed ID: 27524097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of beta-stabilizing elements of titanium alloys.
    Eisenbarth E; Velten D; Müller M; Thull R; Breme J
    Biomaterials; 2004 Nov; 25(26):5705-13. PubMed ID: 15147816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable magnesium alloys as temporary orthopaedic implants: a review.
    Kamrani S; Fleck C
    Biometals; 2019 Apr; 32(2):185-193. PubMed ID: 30659451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the design of titanium alloys for orthopedic applications.
    Guillemot F
    Expert Rev Med Devices; 2005 Nov; 2(6):741-8. PubMed ID: 16293101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of 3D Modelling and Printing in Orthopaedic Tissue Engineering: A Review of the Current Literature.
    Shaunak S; Dhinsa BS; Khan WS
    Curr Stem Cell Res Ther; 2017; 12(3):225-232. PubMed ID: 27133084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.