These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31147237)

  • 1. Bayesian Statistical Model of Item Response Theory in Observer Studies of Radiologists.
    Nishio M; Akasaka T; Sakamoto R; Togashi K
    Acad Radiol; 2020 Mar; 27(3):e45-e54. PubMed ID: 31147237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CT temporal subtraction method for detection of sclerotic bone metastasis in the thoracolumbar spine.
    Ueno M; Aoki T; Murakami S; Kim H; Terasawa T; Fujisaki A; Hayashida Y; Korogi Y
    Eur J Radiol; 2018 Oct; 107():54-59. PubMed ID: 30292273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of suspected brain infarctions on CT can be significantly improved with temporal subtraction images.
    Akasaka T; Yakami M; Nishio M; Onoue K; Aoyama G; Nakagomi K; Iizuka Y; Kubo T; Emoto Y; Satoh K; Yamamoto H; Togashi K
    Eur Radiol; 2019 Feb; 29(2):759-769. PubMed ID: 30062525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal subtraction of computed tomography images improves detectability of bone metastases by radiology residents.
    Onoue K; Nishio M; Yakami M; Sakamoto R; Aoyama G; Nakagomi K; Iizuka Y; Kubo T; Emoto Y; Akasaka T; Satoh K; Yamamoto H; Isoda H; Togashi K
    Eur Radiol; 2019 Dec; 29(12):6439-6442. PubMed ID: 31273458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Usefulness of temporal subtraction images for identification of interval changes in successive whole-body bone scans: JAFROC analysis of radiologists' performance.
    Shiraishi J; Appelbaum D; Pu Y; Li Q; Pesce L; Doi K
    Acad Radiol; 2007 Aug; 14(8):959-66. PubMed ID: 17659242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian multidimensional nominal response model for observer study of radiologists.
    Nishio M; Kobayashi D; Matsuo H; Urase Y; Nishioka E; Murakami T
    Jpn J Radiol; 2023 Apr; 41(4):449-455. PubMed ID: 36469224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal subtraction CT with nonrigid image registration improves detection of bone metastases by radiologists: results of a large-scale observer study.
    Onoue K; Yakami M; Nishio M; Sakamoto R; Aoyama G; Nakagomi K; Iizuka Y; Kubo T; Emoto Y; Akasaka T; Satoh K; Yamamoto H; Isoda H; Togashi K
    Sci Rep; 2021 Sep; 11(1):18422. PubMed ID: 34531429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal subtraction method for lung nodule detection on successive thoracic CT soft-copy images.
    Aoki T; Murakami S; Kim H; Fujii M; Takahashi H; Oki H; Hayashida Y; Katsuragawa S; Shiraishi J; Korogi Y
    Radiology; 2014 Apr; 271(1):255-61. PubMed ID: 24475812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of lung carcinoma with predominant ground-glass opacity on CT using temporal subtraction method.
    Terasawa T; Aoki T; Murakami S; Kim H; Fujii M; Kobayashi M; Chihara C; Hayashida Y; Korogi Y
    Eur Radiol; 2018 Apr; 28(4):1594-1599. PubMed ID: 29063257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temporal subtraction images on radiologists' detection of lung cancer on CT: results of the observer performance study with use of film computed tomography images.
    Abe H; Ishida T; Shiraishi J; Li F; Katsuragawa S; Sone S; Macmahon H; Doi K
    Acad Radiol; 2004 Dec; 11(12):1337-43. PubMed ID: 15596371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of lung nodules on digital chest radiographs: potential usefulness of a new contralateral subtraction technique.
    Tsukuda S; Heshiki A; Katsuragawa S; Li Q; MacMahon H; Doi K
    Radiology; 2002 Apr; 223(1):199-203. PubMed ID: 11930067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal Subtraction of Serial CT Images with Large Deformation Diffeomorphic Metric Mapping in the Identification of Bone Metastases.
    Sakamoto R; Yakami M; Fujimoto K; Nakagomi K; Kubo T; Emoto Y; Akasaka T; Aoyama G; Yamamoto H; Miller MI; Mori S; Togashi K
    Radiology; 2017 Nov; 285(2):629-639. PubMed ID: 28678671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.
    Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K
    Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the Stan Program for Bayesian Item Response Theory.
    Luo Y; Jiao H
    Educ Psychol Meas; 2018 Jun; 78(3):384-408. PubMed ID: 30140099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Item Response Theory-Informed Strategy to Model Total Score Data from Composite Scales.
    Wellhagen GJ; Ueckert S; Kjellsson MC; Karlsson MO
    AAPS J; 2021 Mar; 23(3):45. PubMed ID: 33728519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scoring Depression on a Common Metric: A Comparison of EAP Estimation, Plausible Value Imputation, and Full Bayesian IRT Modeling.
    Fischer HF; Rose M
    Multivariate Behav Res; 2019; 54(1):85-99. PubMed ID: 30235003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian classifier for predicting malignant renal cysts on MDCT: early clinical experience.
    Lee Y; Kim N; Cho KS; Kang SH; Kim DY; Jung YY; Kim JK
    AJR Am J Roentgenol; 2009 Aug; 193(2):W106-11. PubMed ID: 19620410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regularized Bayesian calibration and scoring of the WD-FAB IRT model improves predictive performance over marginal maximum likelihood.
    Chang JC; Porcino J; Rasch EK; Tang L
    PLoS One; 2022; 17(4):e0266350. PubMed ID: 35395055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ROC analysis of detection of metastatic pulmonary nodules on digital chest radiographs with temporal subtraction.
    Uozumi T; Nakamura K; Watanabe H; Nakata H; Katsuragawa S; Doi K
    Acad Radiol; 2001 Sep; 8(9):871-8. PubMed ID: 11724042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of data from the International Outcome Inventory for Hearing Aids (IOI-HA) using Bayesian Item Response Theory.
    Leijon A; Dillon H; Hickson L; Kinkel M; Kramer SE; Nordqvist P
    Int J Audiol; 2021 Feb; 60(2):81-88. PubMed ID: 32917111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.