These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. MOSAIC for multiple-reward environments. Sugimoto N; Haruno M; Doya K; Kawato M Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558 [TBL] [Abstract][Full Text] [Related]
7. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies. Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125 [TBL] [Abstract][Full Text] [Related]
8. Emergent Solutions to High-Dimensional Multitask Reinforcement Learning. Kelly S; Heywood MI Evol Comput; 2018; 26(3):347-380. PubMed ID: 29932363 [TBL] [Abstract][Full Text] [Related]
9. Application of Deep Reinforcement Learning to NS-SHAFT Game Signal Control. Chang CL; Chen ST; Lin PY; Chang CY Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890943 [TBL] [Abstract][Full Text] [Related]
10. Outracing champion Gran Turismo drivers with deep reinforcement learning. Wurman PR; Barrett S; Kawamoto K; MacGlashan J; Subramanian K; Walsh TJ; Capobianco R; Devlic A; Eckert F; Fuchs F; Gilpin L; Khandelwal P; Kompella V; Lin H; MacAlpine P; Oller D; Seno T; Sherstan C; Thomure MD; Aghabozorgi H; Barrett L; Douglas R; Whitehead D; Dürr P; Stone P; Spranger M; Kitano H Nature; 2022 Feb; 602(7896):223-228. PubMed ID: 35140384 [TBL] [Abstract][Full Text] [Related]
11. Multiagent cooperation and competition with deep reinforcement learning. Tampuu A; Matiisen T; Kodelja D; Kuzovkin I; Korjus K; Aru J; Aru J; Vicente R PLoS One; 2017; 12(4):e0172395. PubMed ID: 28380078 [TBL] [Abstract][Full Text] [Related]
12. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space. Zu L; He X; Yang J; Liu L; Wang W Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108 [TBL] [Abstract][Full Text] [Related]
13. All by Myself: Learning individualized competitive behavior with a contrastive reinforcement learning optimization. Barros P; Sciutti A Neural Netw; 2022 Jun; 150():364-376. PubMed ID: 35358886 [TBL] [Abstract][Full Text] [Related]
14. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games. Baur K; Schättin A; de Bruin ED; Riener R; Duarte JE; Wolf P J Neuroeng Rehabil; 2018 Nov; 15(1):107. PubMed ID: 30454009 [TBL] [Abstract][Full Text] [Related]
15. Self-orienting in human and machine learning. De Freitas J; Uğuralp AK; Oğuz-Uğuralp Z; Paul LA; Tenenbaum J; Ullman TD Nat Hum Behav; 2023 Dec; 7(12):2126-2139. PubMed ID: 37653146 [TBL] [Abstract][Full Text] [Related]
16. Weak Human Preference Supervision for Deep Reinforcement Learning. Cao Z; Wong K; Lin CT IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604 [TBL] [Abstract][Full Text] [Related]
17. Adaptive Optimal Control for Stochastic Multiplayer Differential Games Using On-Policy and Off-Policy Reinforcement Learning. Liu M; Wan Y; Lewis FL; Lopez VG IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5522-5533. PubMed ID: 32142455 [TBL] [Abstract][Full Text] [Related]
18. Exploring Potential Energy Surfaces Using Reinforcement Machine Learning. Mills AW; Goings JJ; Beck D; Yang C; Li X J Chem Inf Model; 2022 Jul; 62(13):3169-3179. PubMed ID: 35709515 [TBL] [Abstract][Full Text] [Related]