These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31147622)

  • 1. Changes in the distribution of hydro-climatic extremes in a non-stationary framework.
    Ouarda TBMJ; Charron C
    Sci Rep; 2019 May; 9(1):8104. PubMed ID: 31147622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term temporal evolution of extreme temperature in a warming Earth.
    Contzen J; Dickhaus T; Lohmann G
    PLoS One; 2023; 18(2):e0280503. PubMed ID: 36724145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Non-stationary Standardized Streamflow Index for hydrological drought using climate and human-induced indices as covariates.
    Wang Y; Duan L; Liu T; Li J; Feng P
    Sci Total Environ; 2020 Jan; 699():134278. PubMed ID: 33736192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.
    Wijngaard RR; Lutz AF; Nepal S; Khanal S; Pradhananga S; Shrestha AB; Immerzeel WW
    PLoS One; 2017; 12(12):e0190224. PubMed ID: 29287098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of climate change and variability on the IFD Curves in NSW, Australia.
    Hajani E
    Sci Total Environ; 2022 Nov; 845():157359. PubMed ID: 35843317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-stationary analysis for road drainage design under land-use and climate change scenarios.
    Jiménez-U M; Peña LE; López J
    Heliyon; 2022 Feb; 8(2):e08942. PubMed ID: 35243064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information Entropy Suggests Stronger Nonlinear Associations between Hydro-Meteorological Variables and ENSO.
    Vu TM; Mishra AK; Konapala G
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of climate variables dominating streamflow generation and quantification of streamflow decline in the Loess Plateau, China.
    Zhang J; Gao G; Li Z; Fu B; Gupta HV
    Sci Total Environ; 2020 Jun; 722():137935. PubMed ID: 32208275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate framework for the assessment of key forcing to Lake Malawi level variations in non-stationary frequency analysis.
    Ngongondo C; Zhou Y; Xu CY
    Environ Monit Assess; 2020 Aug; 192(9):593. PubMed ID: 32821968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of climate change impacts on water balance and hydrological extremes in Bang Pakong-Prachin Buri river basin, Thailand.
    Okwala T; Shrestha S; Ghimire S; Mohanasundaram S; Datta A
    Environ Res; 2020 Jul; 186():109544. PubMed ID: 32361258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonality of climatic drivers of flood variability in the conterminous United States.
    Dickinson JE; Harden TM; McCabe GJ
    Sci Rep; 2019 Oct; 9(1):15321. PubMed ID: 31653917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Know your limits? Climate extremes impact the range of Scots pine in unexpected places.
    Julio Camarero J; Gazol A; Sancho-Benages S; Sangüesa-Barreda G
    Ann Bot; 2015 Nov; 116(6):917-27. PubMed ID: 26292992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin.
    Piras M; Mascaro G; Deidda R; Vivoni ER
    Sci Total Environ; 2016 Feb; 543(Pt B):952-64. PubMed ID: 26146163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling non-stationary annual maximum flood heights in the lower Limpopo River basin of Mozambique.
    Maposa D; Cochran JJ; Lesaoana M
    Jamba; 2016; 8(1):185. PubMed ID: 29955284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Five centuries of reconstructed streamflow in Athabasca River Basin, Canada: Non-stationarity and teleconnection to climate patterns.
    Wu Y; Gan TY; She Y; Xu C; Yan H
    Sci Total Environ; 2020 Dec; 746():141330. PubMed ID: 32771763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in the consecutive days of temperature and precipitation extremes in China during 1961-2015.
    Shi J; Cui L; Wen K; Tian Z; Wei P; Zhang B
    Environ Res; 2018 Feb; 161():381-391. PubMed ID: 29197279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems.
    Tan X; Gan TY; Horton DE
    Glob Chang Biol; 2018 Oct; 24(10):4696-4708. PubMed ID: 29802780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonstationary precipitation Intensity-Duration-Frequency curves for infrastructure design in a changing climate.
    Cheng L; AghaKouchak A
    Sci Rep; 2014 Nov; 4():7093. PubMed ID: 25403227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing ecological climate change impact assessments to reflect key climatic drivers.
    Sofaer HR; Barsugli JJ; Jarnevich CS; Abatzoglou JT; Talbert MK; Miller BW; Morisette JT
    Glob Chang Biol; 2017 Jul; 23(7):2537-2553. PubMed ID: 28173628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events.
    Rita A; Borghetti M; Todaro L; Saracino A
    Front Plant Sci; 2016; 7():1126. PubMed ID: 27532008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.