These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31147694)

  • 1. Collaborative involvement of woody plant roots and rhizosphere microorganisms in the formation of pedogenetic clays.
    Reith F; Verboom W; Pate J; Chittleborough D
    Ann Bot; 2019 Nov; 124(6):1007-1018. PubMed ID: 31147694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contemporary biogenic formation of clay pavements by eucalypts: further support for the phytotarium concept.
    Pate JS; Verboom WH
    Ann Bot; 2009 Mar; 103(5):673-85. PubMed ID: 19141601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neoformation of clay in lateral root catchments of mallee eucalypts: a chemical perspective.
    Verboom WH; Pate JS; Aspandiar M
    Ann Bot; 2010 Jan; 105(1):23-36. PubMed ID: 19897459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.
    Saleem M; Law AD; Moe LA
    Microb Ecol; 2016 Feb; 71(2):469-72. PubMed ID: 26391804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of aridity and dune type on rhizosphere soil bacterial communities of Caragana microphylla in desert regions of northern China.
    Gao J; Luo Y; Wei Y; Huang Y; Zhang H; He W; Sheng H; An L
    PLoS One; 2019; 14(10):e0224195. PubMed ID: 31626675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons.
    Shi S; Nuccio E; Herman DJ; Rijkers R; Estera K; Li J; da Rocha UN; He Z; Pett-Ridge J; Brodie EL; Zhou J; Firestone M
    mBio; 2015 Aug; 6(4):e00746. PubMed ID: 26242625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host.
    Marasco R; Mosqueira MJ; Fusi M; Ramond JB; Merlino G; Booth JM; Maggs-Kölling G; Cowan DA; Daffonchio D
    Microbiome; 2018 Dec; 6(1):215. PubMed ID: 30514367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial microbiome associated with the rhizosphere and root interior of crops in Saskatchewan, Canada.
    Cordero J; de Freitas JR; Germida JJ
    Can J Microbiol; 2020 Jan; 66(1):71-85. PubMed ID: 31658427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of plant development on the rhizobacterial population of Arachis hypogaea: a multifactorial analysis.
    Haldar S; Sengupta S
    J Basic Microbiol; 2015 Jul; 55(7):922-8. PubMed ID: 25572408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root isoflavonoids and hairy root transformation influence key bacterial taxa in the soybean rhizosphere.
    White LJ; Ge X; Brözel VS; Subramanian S
    Environ Microbiol; 2017 Apr; 19(4):1391-1406. PubMed ID: 27871141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil of Oilseed Rape.
    Gkarmiri K; Mahmood S; Ekblad A; Alström S; Högberg N; Finlay R
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28887416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhizosphere Bacterial Community Characteristics over Different Years of Sugarcane Ratooning in Consecutive Monoculture.
    Gao X; Wu Z; Liu R; Wu J; Zeng Q; Qi Y
    Biomed Res Int; 2019; 2019():4943150. PubMed ID: 31815142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere.
    Hou D; Lin Z; Wang R; Ge J; Wei S; Xie R; Wang H; Wang K; Hu Y; Yang X; Lu L; Tian S
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct rhizosphere effect on active and total bacterial communities in paddy soils.
    Li H; Su JQ; Yang XR; Zhu YG
    Sci Total Environ; 2019 Feb; 649():422-430. PubMed ID: 30176455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity and space-time dynamics of the bacterial communities in cotton (
    Shi Y; Yang H; Chu M; Niu X; Huo X; Gao Y; Zeng J; Lin Q; Zhang T; Li Y; Outi K; Lou K; Li X; Dang W; Zhang T
    Can J Microbiol; 2020 Mar; 66(3):228-242. PubMed ID: 31944857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing.
    Yang Y; Wang N; Guo X; Zhang Y; Ye B
    PLoS One; 2017; 12(5):e0178425. PubMed ID: 28542542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multitrophic interactions in the rhizosphere microbiome of wheat: from bacteria and fungi to protists.
    Rossmann M; Pérez-Jaramillo JE; Kavamura VN; Chiaramonte JB; Dumack K; Fiore-Donno AM; Mendes LW; Ferreira MMC; Bonkowski M; Raaijmakers JM; Mauchline TH; Mendes R
    FEMS Microbiol Ecol; 2020 Apr; 96(4):. PubMed ID: 32124916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of endophytic and rhizosphere bacterial diversity and function in the endangered plant Paeonia ludlowii.
    Lu Y; Zhang E; Hong M; Yin X; Cai H; Yuan L; Yuan F; Li L; Zhao K; Lan X
    Arch Microbiol; 2020 Sep; 202(7):1717-1728. PubMed ID: 32313992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus.
    Timonen S; Sinkko H; Sun H; Sietiö OM; Rinta-Kanto JM; Kiheri H; Heinonsalo J
    Microb Ecol; 2017 May; 73(4):939-953. PubMed ID: 28025668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon.
    Hernández M; Dumont MG; Yuan Q; Conrad R
    Appl Environ Microbiol; 2015 Mar; 81(6):2244-53. PubMed ID: 25616793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.