These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31147783)

  • 21. A functional model related to cytochrome c oxidase and its electrocatalytic four-electron reduction of O2.
    Collman JP; Fu L; Herrmann PC; Zhang X
    Science; 1997 Feb; 275(5302):949-51. PubMed ID: 9020071
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co/CoO nanoparticles immobilized on Co-N-doped carbon as trifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.
    Zhang X; Liu R; Zang Y; Liu G; Wang G; Zhang Y; Zhang H; Zhao H
    Chem Commun (Camb); 2016 May; 52(35):5946-9. PubMed ID: 27056374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Buffer p
    Alvarez-Hernandez JL; Sopchak AE; Bren KL
    Inorg Chem; 2020 Jun; 59(12):8061-8069. PubMed ID: 32436698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Self-Assembled Cofacial Cobalt Porphyrin Prism for Oxygen Reduction Catalysis.
    Oldacre AN; Friedman AE; Cook TR
    J Am Chem Soc; 2017 Feb; 139(4):1424-1427. PubMed ID: 28102678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photochemical H2 with noble-metal-free molecular devices comprising a porphyrin photosensitizer and a cobaloxime catalyst.
    Zhang P; Wang M; Li C; Li X; Dong J; Sun L
    Chem Commun (Camb); 2010 Dec; 46(46):8806-8. PubMed ID: 20957270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular cobalt pentapyridine catalysts for generating hydrogen from water.
    Sun Y; Bigi JP; Piro NA; Tang ML; Long JR; Chang CJ
    J Am Chem Soc; 2011 Jun; 133(24):9212-5. PubMed ID: 21612276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Porphyrin-Co(III)-'Nitrene Radical' Species Relevant in Catalytic Nitrene Transfer Reactions.
    Goswami M; Lyaskovskyy V; Domingos SR; Buma WJ; Woutersen S; Troeppner O; Ivanović-Burmazović I; Lu H; Cui X; Zhang XP; Reijerse EJ; DeBeer S; van Schooneveld MM; Pfaff FF; Ray K; de Bruin B
    J Am Chem Soc; 2015 Apr; 137(16):5468-79. PubMed ID: 25844713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrolyzed binuclear-cobalt-phthalocyanine as electrocatalyst for oxygen reduction reaction in microbial fuel cells.
    Li B; Wang M; Zhou X; Wang X; Liu B; Li B
    Bioresour Technol; 2015 Oct; 193():545-8. PubMed ID: 26142820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metal corroles as electrocatalysts for oxygen reduction.
    Collman JP; Kaplun M; Decréau RA
    Dalton Trans; 2006 Jan; (4):554-9. PubMed ID: 16402141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cobalt triarylcorroles containing one, two or three nitro groups. Effect of NO₂ substitution on electrochemical properties and catalytic activity for reduction of molecular oxygen in acid media.
    Li B; Ou Z; Meng D; Tang J; Fang Y; Liu R; Kadish KM
    J Inorg Biochem; 2014 Jul; 136():130-9. PubMed ID: 24507930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slow electron transfer rates for fluorinated cobalt porphyrins: electronic and conformational factors modulating metalloporphyrin ET.
    Sun H; Smirnov VV; DiMagno SG
    Inorg Chem; 2003 Sep; 42(19):6032-40. PubMed ID: 12971774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-promoted electron transfer from cobalt(II) porphyrin to p-fluoranil to produce a dimer radical anion-cobalt(III) porphyrin complex.
    Okamoto K; Fukuzumi S
    J Am Chem Soc; 2003 Oct; 125(41):12416-7. PubMed ID: 14531678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the thermodynamic onset potential of electrocatalytic O2 reduction reaction by synthetic iron-porphyrin complexes.
    Amanullah S; Das PK; Samanta S; Dey A
    Chem Commun (Camb); 2015 Jun; 51(49):10010-3. PubMed ID: 26000662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Performance Porphyrin-Based Dye-Sensitized Solar Cells with Iodine and Cobalt Redox Shuttles.
    Xiang H; Fan W; Li JH; Li T; Robertson N; Song X; Wu W; Wang Z; Zhu W; Tian H
    ChemSusChem; 2017 Mar; 10(5):938-945. PubMed ID: 27918642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemistry and spectroelectrochemistry of beta,beta'-fused quinoxalinoporphyrins and related extended bis-porphyrins with Co(III), Co(II), and Co(I) central metal ions.
    Zhu W; Sintic M; Ou Z; Sintic PJ; McDonald JA; Brotherhood PR; Crossley MJ; Kadish KM
    Inorg Chem; 2010 Feb; 49(3):1027-38. PubMed ID: 20028095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing Scaling Relationships for Molecular Electrocatalysis through Studies of Fe-Porphyrin-Catalyzed O
    Martin DJ; Wise CF; Pegis ML; Mayer JM
    Acc Chem Res; 2020 May; 53(5):1056-1065. PubMed ID: 32281786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic hydrogen production from a noble metal free system based on a water soluble porphyrin derivative and a cobaloxime catalyst.
    Lazarides T; Delor M; Sazanovich IV; McCormick TM; Georgakaki I; Charalambidis G; Weinstein JA; Coutsolelos AG
    Chem Commun (Camb); 2014 Jan; 50(5):521-3. PubMed ID: 23938601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the Activity of Heterogeneous Cofacial Cobalt Porphyrins for Oxygen Reduction Electrocatalysis through Self-Assembly.
    Oldacre AN; Crawley MR; Friedman AE; Cook TR
    Chemistry; 2018 Aug; 24(43):10984-10987. PubMed ID: 29845658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms of cobalt-catalyzed hydrogen evolution.
    Marinescu SC; Winkler JR; Gray HB
    Proc Natl Acad Sci U S A; 2012 Sep; 109(38):15127-31. PubMed ID: 22949704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. O
    Amanullah S; Saha P; Dey A
    Faraday Discuss; 2022 May; 234(0):143-158. PubMed ID: 35176126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.