These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 31147819)

  • 1. Enhancing the Therapeutic Potential of Mesenchymal Stem Cells with the CRISPR-Cas System.
    Filho DM; de Carvalho Ribeiro P; Oliveira LF; Dos Santos ALRT; Parreira RC; Pinto MCX; Resende RR
    Stem Cell Rev Rep; 2019 Aug; 15(4):463-473. PubMed ID: 31147819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing Mesenchymal Stem Cell Therapy with CRISPR/Cas9 for Clinical Trial Studies.
    Golchin A; Shams F; Karami F
    Adv Exp Med Biol; 2020; 1247():89-100. PubMed ID: 31974923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-targeted genome editing of mesenchymal stem cell-derived therapies for type 1 diabetes: a path to clinical success?
    Gerace D; Martiniello-Wilks R; Nassif NT; Lal S; Steptoe R; Simpson AM
    Stem Cell Res Ther; 2017 Mar; 8(1):62. PubMed ID: 28279194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal Stem Cell Engineering.
    Liu S
    Methods Mol Biol; 2018; 1868():145-150. PubMed ID: 30244462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and advances in clinical applications of mesenchymal stromal cells.
    Zhou T; Yuan Z; Weng J; Pei D; Du X; He C; Lai P
    J Hematol Oncol; 2021 Feb; 14(1):24. PubMed ID: 33579329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research Progress on Application of CRISPR/Cas Genome Editing Technology in Hematological Diseases -Review].
    Xin LY; Liu AF; Zhong SS; Chen YJ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Aug; 24(4):1284-8. PubMed ID: 27531817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review.
    Babačić H; Mehta A; Merkel O; Schoser B
    PLoS One; 2019; 14(2):e0212198. PubMed ID: 30794581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application and optimization of CRISPR/Cas system in bacteria].
    Fu J; Yang F; Xie H; Gu F
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):341-350. PubMed ID: 30912343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The CRISPR-Cas system: beyond genome editing].
    Croteau FR; Rousseau GM; Moineau S
    Med Sci (Paris); 2018 Oct; 34(10):813-819. PubMed ID: 30451675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct comparison of the immunogenicity of major histocompatibility complex-I and -II deficient mesenchymal stem cells
    Halm D; Leibig N; Martens J; Stark GB; Groß T; Zimmermann S; Finkenzeller G; Lampert F
    Biol Chem; 2021 May; 402(6):693-702. PubMed ID: 33544464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
    Horii T; Hatada I
    Endocr J; 2016; 63(3):213-9. PubMed ID: 26743444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research progress and applications of gene editing technology CRISPR/Cas in zebrafish].
    Ouyang J; Xue S; Zhou Q; Cui H
    Sheng Wu Gong Cheng Xue Bao; 2020 Jan; 36(1):1-12. PubMed ID: 32072776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool.
    Sahel DK; Mittal A; Chitkara D
    J Pharmacol Exp Ther; 2019 Sep; 370(3):725-735. PubMed ID: 31122933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile and multifaceted CRISPR/Cas gene editing tool for plant research.
    Pandey PK; Quilichini TD; Vaid N; Gao P; Xiang D; Datla R
    Semin Cell Dev Biol; 2019 Dec; 96():107-114. PubMed ID: 31022459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Application of CRISPR/Cas Technology to Efficiently Model Complex Cancer Genomes in Stem Cells.
    Albitar A; Rohani B; Will B; Yan A; Gallicano GI
    J Cell Biochem; 2018 Jan; 119(1):134-140. PubMed ID: 28594094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
    Oude Blenke E; Evers MJ; Mastrobattista E; van der Oost J
    J Control Release; 2016 Dec; 244(Pt B):139-148. PubMed ID: 27498021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems.
    Bae T; Hur JW; Kim D; Hur JK
    Genes Genomics; 2019 Aug; 41(8):871-877. PubMed ID: 31119685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas System: History and Prospects as a Genome Editing Tool in Microorganisms.
    Javed MR; Sadaf M; Ahmed T; Jamil A; Nawaz M; Abbas H; Ijaz A
    Curr Microbiol; 2018 Dec; 75(12):1675-1683. PubMed ID: 30078067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.