These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31147922)

  • 21. A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli.
    Grove JI; Wood SR; Briggs GS; Oldham NJ; Lloyd RG
    DNA Repair (Amst); 2009 Dec; 8(12):1434-43. PubMed ID: 19846353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear ordering and dynamic segregation of the bacterial chromosome.
    Breier AM; Cozzarelli NR
    Proc Natl Acad Sci U S A; 2004 Jun; 101(25):9175-6. PubMed ID: 15199189
    [No Abstract]   [Full Text] [Related]  

  • 23. RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks.
    Meddows TR; Savory AP; Grove JI; Moore T; Lloyd RG
    Mol Microbiol; 2005 Jul; 57(1):97-110. PubMed ID: 15948952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-cycle-regulated expression and subcellular localization of the Caulobacter crescentus SMC chromosome structural protein.
    Jensen RB; Shapiro L
    J Bacteriol; 2003 May; 185(10):3068-75. PubMed ID: 12730166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single molecule tracking reveals spatio-temporal dynamics of bacterial DNA repair centres.
    Rösch TC; Altenburger S; Oviedo-Bocanegra L; Pediaditakis M; Najjar NE; Fritz G; Graumann PL
    Sci Rep; 2018 Nov; 8(1):16450. PubMed ID: 30401797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Caulobacter requires a dedicated mechanism to initiate chromosome segregation.
    Toro E; Hong SH; McAdams HH; Shapiro L
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15435-40. PubMed ID: 18824683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation.
    Lim HC; Surovtsev IV; Beltran BG; Huang F; Bewersdorf J; Jacobs-Wagner C
    Elife; 2014 May; 3():e02758. PubMed ID: 24859756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of Escherichia coli RecN aggregates by ClpXP protease and its implications for DNA damage tolerance.
    Nagashima K; Kubota Y; Shibata T; Sakaguchi C; Shinagawa H; Hishida T
    J Biol Chem; 2006 Oct; 281(41):30941-6. PubMed ID: 16914543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB.
    Badrinarayanan A; Le TBK; Spille JH; Cisse II; Laub MT
    PLoS Genet; 2017 May; 13(5):e1006783. PubMed ID: 28489851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair.
    Graumann PL; Knust T
    Chromosome Res; 2009; 17(2):265-75. PubMed ID: 19308706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SMC protein RecN drives RecA filament translocation for in vivo homology search.
    Chimthanawala A; Parmar JJ; Kumar S; Iyer KS; Rao M; Badrinarayanan A
    Proc Natl Acad Sci U S A; 2022 Nov; 119(46):e2209304119. PubMed ID: 36346847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An SMC ATPase mutant disrupts chromosome segregation in Caulobacter.
    Schwartz MA; Shapiro L
    Mol Microbiol; 2011 Dec; 82(6):1359-74. PubMed ID: 21923769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromosome Conformation Capture with Deep Sequencing to Study the Roles of the Structural Maintenance of Chromosomes Complex In Vivo.
    Le TBK
    Methods Mol Biol; 2019; 2004():105-118. PubMed ID: 31147913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacillus subtilis SbcC protein plays an important role in DNA inter-strand cross-link repair.
    Mascarenhas J; Sanchez H; Tadesse S; Kidane D; Krisnamurthy M; Alonso JC; Graumann PL
    BMC Mol Biol; 2006 Jun; 7():20. PubMed ID: 16780573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome.
    Tran NT; Stevenson CE; Som NF; Thanapipatsiri A; Jalal ASB; Le TBK
    Nucleic Acids Res; 2018 Feb; 46(3):1196-1209. PubMed ID: 29186514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA double strand break end-processing and RecA induce RecN expression levels in Bacillus subtilis.
    Cardenas PP; Gándara C; Alonso JC
    DNA Repair (Amst); 2014 Feb; 14():1-8. PubMed ID: 24373815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compaction and transport properties of newly replicated Caulobacter crescentus DNA.
    Hong SH; McAdams HH
    Mol Microbiol; 2011 Dec; 82(6):1349-58. PubMed ID: 22085253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of chromosome replication in caulobacter crescentus.
    Marczynski GT; Shapiro L
    Annu Rev Microbiol; 2002; 56():625-56. PubMed ID: 12142494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Management of E. coli sister chromatid cohesion in response to genotoxic stress.
    Vickridge E; Planchenault C; Cockram C; Junceda IG; Espéli O
    Nat Commun; 2017 Mar; 8():14618. PubMed ID: 28262707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the terminus region of the Caulobacter crescentus chromosome and identification of the dif site.
    Jensen RB
    J Bacteriol; 2006 Aug; 188(16):6016-9. PubMed ID: 16885470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.