These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 31148039)
1. Transient Gene Expression as a Tool to Monitor and Manipulate the Levels of Acidic Phospholipids in Plant Cells. Noack LC; Pejchar P; Sekereš J; Jaillais Y; Potocký M Methods Mol Biol; 2019; 1992():189-199. PubMed ID: 31148039 [TBL] [Abstract][Full Text] [Related]
2. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. Potocký M; Pleskot R; Pejchar P; Vitale N; Kost B; Žárský V New Phytol; 2014 Jul; 203(2):483-494. PubMed ID: 24750036 [TBL] [Abstract][Full Text] [Related]
3. Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging. Platre MP; Jaillais Y Methods Mol Biol; 2016; 1376():175-94. PubMed ID: 26552684 [TBL] [Abstract][Full Text] [Related]
4. Assessing Extrinsic Membrane Protein Dependency to PI4P Using a Plasma Membrane to Endosome Relocalization Transient Assay in Nicotiana benthamiana. Doumane M; Caillaud MC Methods Mol Biol; 2020; 2177():95-108. PubMed ID: 32632808 [TBL] [Abstract][Full Text] [Related]
5. Testing Pollen Tube Proteins for In Vivo Binding to Phosphatidic Acid by n-Butanol Treatment and Confocal Microscopy. Fritz C; Kost B Methods Mol Biol; 2020; 2160():307-325. PubMed ID: 32529446 [TBL] [Abstract][Full Text] [Related]
6. Cell Permeable Ratiometric Fluorescent Sensors for Imaging Phosphoinositides. Mondal S; Rakshit A; Pal S; Datta A ACS Chem Biol; 2016 Jul; 11(7):1834-43. PubMed ID: 27082310 [TBL] [Abstract][Full Text] [Related]
7. Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth. Bloch D; Pleskot R; Pejchar P; Potocký M; Trpkošová P; Cwiklik L; Vukašinović N; Sternberg H; Yalovsky S; Žárský V Plant Physiol; 2016 Oct; 172(2):980-1002. PubMed ID: 27516531 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of the Plant Nuclear Envelope During Cell Division. Evans DE; Graumann K Methods Mol Biol; 2016; 1370():115-26. PubMed ID: 26659958 [TBL] [Abstract][Full Text] [Related]
9. Super-Resolution Microscopy and Single-Protein Tracking in Live Bacteria Using a Genetically Encoded, Photostable Fluoromodule. Saurabh S; Perez AM; Comerci CJ; Shapiro L; Moerner WE Curr Protoc Cell Biol; 2017 Jun; 75():4.32.1-4.32.22. PubMed ID: 28627757 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Exocyst Subunit EXO70 Family Reveals Distinct Membrane Polar Domains in Tobacco Pollen Tubes. Sekereš J; Pejchar P; Šantrůček J; Vukašinović N; Žárský V; Potocký M Plant Physiol; 2017 Mar; 173(3):1659-1675. PubMed ID: 28082718 [TBL] [Abstract][Full Text] [Related]
11. Binding of the PH and polybasic C-terminal domains of ARNO to phosphoinositides and to acidic lipids. Macia E; Paris S; Chabre M Biochemistry; 2000 May; 39(19):5893-901. PubMed ID: 10801341 [TBL] [Abstract][Full Text] [Related]
12. Monitoring phospholipid dynamics during phagocytosis: application of genetically-encoded fluorescent probes. Sarantis H; Grinstein S Methods Cell Biol; 2012; 108():429-44. PubMed ID: 22325613 [TBL] [Abstract][Full Text] [Related]
13. Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. Dubois GA; Jaillais Y Plant Physiol; 2021 Apr; 185(3):577-592. PubMed ID: 33793905 [TBL] [Abstract][Full Text] [Related]
14. MAPKs Influence Pollen Tube Growth by Controlling the Formation of Phosphatidylinositol 4,5-Bisphosphate in an Apical Plasma Membrane Domain. Hempel F; Stenzel I; Heilmann M; Krishnamoorthy P; Menzel W; Golbik R; Helm S; Dobritzsch D; Baginsky S; Lee J; Hoehenwarter W; Heilmann I Plant Cell; 2017 Dec; 29(12):3030-3050. PubMed ID: 29167320 [TBL] [Abstract][Full Text] [Related]
15. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells. Buschmann H Methods Mol Biol; 2016; 1370():17-25. PubMed ID: 26659951 [TBL] [Abstract][Full Text] [Related]
16. Osmotically induced cell swelling versus cell shrinking elicits specific changes in phospholipid signals in tobacco pollen tubes. Zonia L; Munnik T Plant Physiol; 2004 Feb; 134(2):813-23. PubMed ID: 14739344 [TBL] [Abstract][Full Text] [Related]
17. Fluorescent Biosensors for Multiplexed Imaging of Phosphoinositide Dynamics. Hertel F; Li S; Chen M; Pott L; Mehta S; Zhang J ACS Chem Biol; 2020 Jan; 15(1):33-38. PubMed ID: 31855412 [TBL] [Abstract][Full Text] [Related]
18. Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Várnai P; Balla T Biochim Biophys Acta; 2006 Aug; 1761(8):957-67. PubMed ID: 16702024 [TBL] [Abstract][Full Text] [Related]
19. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. Scholz P; Pejchar P; Fernkorn M; Škrabálková E; Pleskot R; Blersch K; Munnik T; Potocký M; Ischebeck T New Phytol; 2022 Mar; 233(5):2185-2202. PubMed ID: 34931304 [TBL] [Abstract][Full Text] [Related]
20. Degradation of membrane phospholipids in plant cells cultured in sucrose-free medium. Inoue Y; Moriyasu Y Autophagy; 2006; 2(3):244-6. PubMed ID: 16874091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]