BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31148047)

  • 1. Automated Image Acquisition and Morphological Analysis of Cell Growth Mutants in Physcomitrella patens.
    Galotto G; Bibeau JP; Vidali L
    Methods Mol Biol; 2019; 1992():307-322. PubMed ID: 31148047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological analysis of cell growth mutants in Physcomitrella.
    Bibeau JP; Vidali L
    Methods Mol Biol; 2014; 1080():201-13. PubMed ID: 24132431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens.
    Miki T; Nakaoka Y; Goshima G
    Methods Mol Biol; 2016; 1470():225-46. PubMed ID: 27581297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA interference in the moss Physcomitrella patens.
    Bezanilla M; Pan A; Quatrano RS
    Plant Physiol; 2003 Oct; 133(2):470-4. PubMed ID: 14555775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profilin is essential for tip growth in the moss Physcomitrella patens.
    Vidali L; Augustine RC; Kleinman KP; Bezanilla M
    Plant Cell; 2007 Nov; 19(11):3705-22. PubMed ID: 17981997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence.
    Overdijk EJ; DE Keijzer J; DE Groot D; Schoina C; Bouwmeester K; Ketelaar T; Govers F
    J Microsc; 2016 Aug; 263(2):171-80. PubMed ID: 27027911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging Mitosis in the Moss Physcomitrella patens.
    Yamada M; Miki T; Goshima G
    Methods Mol Biol; 2016; 1413():263-82. PubMed ID: 27193855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An RNAi system in Physcomitrella patens with an internal marker for silencing allows for rapid identification of loss of function phenotypes.
    Bezanilla M; Perroud PF; Pan A; Klueh P; Quatrano RS
    Plant Biol (Stuttg); 2005 May; 7(3):251-7. PubMed ID: 15912444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale analysis of 73 329 physcomitrella plants transformed with different gene disruption libraries: production parameters and mutant phenotypes.
    Schween G; Egener T; Fritzowsky D; Granado J; Guitton MC; Hartmann N; Hohe A; Holtorf H; Lang D; Lucht JM; Reinhard C; Rensing SA; Schlink K; Schulte J; Reski R
    Plant Biol (Stuttg); 2005 May; 7(3):228-37. PubMed ID: 15912442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the CYP78A subfamily of cytochrome P450 monooxygenases in protonema growth and gametophore formation in the moss Physcomitrella patens.
    Katsumata T; Fukazawa J; Magome H; Jikumaru Y; Kamiya Y; Natsume M; Kawaide H; Yamaguchi S
    Biosci Biotechnol Biochem; 2011; 75(2):331-6. PubMed ID: 21350301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bending of protonema cells in a plastid glycolate/glycerate transporter knockout line of Physcomitrella patens.
    Nakahara J; Takechi K; Myouga F; Moriyama Y; Sato H; Takio S; Takano H
    PLoS One; 2015; 10(3):e0118804. PubMed ID: 25793376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Device for High-Resolution Cytoskeleton Imaging and Washout Assays in Physcomitrium (Physcomitrella) patens.
    Yoshida MW; Kozgunova E
    Methods Mol Biol; 2023; 2604():143-158. PubMed ID: 36773231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of organelle distribution and dynamics in Physcomitrella patens protonemal cells.
    Furt F; Lemoi K; Tüzel E; Vidali L
    BMC Plant Biol; 2012 May; 12():70. PubMed ID: 22594499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both chloronemal and caulonemal cells expand by tip growth in the moss Physcomitrella patens.
    Menand B; Calder G; Dolan L
    J Exp Bot; 2007; 58(7):1843-9. PubMed ID: 17404383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatase and Tensin Homolog Is a Growth Repressor of Both Rhizoid and Gametophore Development in the Moss Physcomitrella patens.
    Saavedra L; Catarino R; Heinz T; Heilmann I; Bezanilla M; Malhó R
    Plant Physiol; 2015 Dec; 169(4):2572-86. PubMed ID: 26463087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The knock-out of ARP3a gene affects F-actin cytoskeleton organization altering cellular tip growth, morphology and development in moss Physcomitrella patens.
    Finka A; Saidi Y; Goloubinoff P; Neuhaus JM; Zrÿd JP; Schaefer DG
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):769-84. PubMed ID: 18613119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient RNAi assay in 96-well plate format facilitates high-throughput gene function studies in planta.
    Wu SZ; Bezanilla M
    Methods Mol Biol; 2012; 918():327-40. PubMed ID: 22893297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic survey of the function of ROP regulators and effectors during tip growth in the moss Physcomitrella patens.
    Bascom C; Burkart GM; Mallett DR; O'Sullivan JE; Tomaszewski AJ; Walsh K; Bezanilla M
    J Exp Bot; 2019 Jan; 70(2):447-457. PubMed ID: 30380098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium-mediated Tnt1 mutagenesis of moss protonemal filaments and generation of stable mutants with impaired gametophyte.
    Mohanasundaram B; Rajmane VB; Jogdand SV; Bhide AJ; Banerjee AK
    Mol Genet Genomics; 2019 Jun; 294(3):583-596. PubMed ID: 30689096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens.
    Thole JM; Perroud PF; Quatrano RS; Running MP
    Plant J; 2014 May; 78(3):441-51. PubMed ID: 24634995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.