These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 31148307)

  • 1. Flexible Thermoelectric Materials and Generators: Challenges and Innovations.
    Wang Y; Yang L; Shi XL; Shi X; Chen L; Dargusch MS; Zou J; Chen ZG
    Adv Mater; 2019 Jul; 31(29):e1807916. PubMed ID: 31148307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Thermoelectric Materials and Devices for Self-Powered Electronic Systems.
    Jia Y; Jiang Q; Sun H; Liu P; Hu D; Pei Y; Liu W; Crispin X; Fabiano S; Ma Y; Cao Y
    Adv Mater; 2021 Oct; 33(42):e2102990. PubMed ID: 34486174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Thermoelectric Design: From Materials and Structures to Devices.
    Shi XL; Zou J; Chen ZG
    Chem Rev; 2020 Aug; 120(15):7399-7515. PubMed ID: 32614171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Organic Thermoelectric Materials and Devices for Wearable Green Energy Harvesting.
    Zhang Y; Park SJ
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31137541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human body heat-driven thermoelectric generators as a sustainable power supply for wearable electronic devices: Recent advances, challenges, and future perspectives.
    Tabaie Z; Omidvar A
    Heliyon; 2023 Apr; 9(4):e14707. PubMed ID: 37025803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.
    Zhang Q; Sun Y; Xu W; Zhu D
    Adv Mater; 2014 Oct; 26(40):6829-51. PubMed ID: 24687930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsically Self-Healable and Wearable All-Organic Thermoelectric Composite with High Electrical Conductivity for Heat Harvesting.
    Liao Z; Zhou X; Wei G; Wang S; Gao C; Wang L
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43421-43430. PubMed ID: 36121696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printing thermoelectric inks toward next-generation energy and thermal devices.
    Zeng M; Zavanelli D; Chen J; Saeidi-Javash M; Du Y; LeBlanc S; Snyder GJ; Zhang Y
    Chem Soc Rev; 2022 Jan; 51(2):485-512. PubMed ID: 34761784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured Inorganic Chalcogenide-Carbon Nanotube Yarn having a High Thermoelectric Power Factor at Low Temperature.
    Lee T; Lee JW; Park KT; Kim JS; Park CR; Kim H
    ACS Nano; 2021 Aug; 15(8):13118-13128. PubMed ID: 34279909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications.
    Zhang Y; Wang W; Zhang F; Dai K; Li C; Fan Y; Chen G; Zheng Q
    Small; 2022 Mar; 18(12):e2104922. PubMed ID: 34921579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully Printed Organic-Inorganic Nanocomposites for Flexible Thermoelectric Applications.
    Ou C; Sangle AL; Datta A; Jing Q; Busolo T; Chalklen T; Narayan V; Kar-Narayan S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19580-19587. PubMed ID: 29775276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications.
    Xin J; Basit A; Li S; Danto S; Tjin SC; Wei L
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-Nanotube-Based Thermoelectric Materials and Devices.
    Blackburn JL; Ferguson AJ; Cho C; Grunlan JC
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29356158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Fiber-Based Wearable Energy Systems.
    Tao X
    Acc Chem Res; 2019 Feb; 52(2):307-315. PubMed ID: 30698417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology.
    Zhao X; Han W; Zhao C; Wang S; Kong F; Ji X; Li Z; Shen X
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10301-10309. PubMed ID: 30773879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Waste Heat Conversion: Integrating Phase-Change Material Heatsinks and Wind Speed Dynamics to Enhance Flexible Thermoelectric Generator Efficiency.
    Egypt P; Sakdanuphab R; Sakulkalavek A; Klongratog B; Somdock N
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Progress on Fiber-Based Thermoelectric Materials: Performance, Device Structures and Applications.
    Shen Y; Wang C; Yang X; Li J; Lu R; Li R; Zhang L; Chen H; Zheng X; Zhang T
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates.
    Hollar C; Lin Z; Kongara M; Varghese T; Karthik C; Schimpf J; Eixenberger J; Davis PH; Wu Y; Duan X; Zhang Y; Estrada D
    Adv Mater Technol; 2020 Nov; 5(11):. PubMed ID: 33738334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable-produced 3D elastic thermoelectric network for body heat harvesting.
    Liu Y; Wang X; Hou S; Wu Z; Wang J; Mao J; Zhang Q; Liu Z; Cao F
    Nat Commun; 2023 May; 14(1):3058. PubMed ID: 37244924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance.
    Hong M; Zou J; Chen ZG
    Adv Mater; 2019 Apr; 31(14):e1807071. PubMed ID: 30756468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.