These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31148938)
1. Discovery of broflanilide, a novel insecticide. Katsuta H; Nomura M; Wakita T; Daido H; Kobayashi Y; Kawahara A; Banba S J Pestic Sci; 2019 May; 44(2):120-128. PubMed ID: 31148938 [TBL] [Abstract][Full Text] [Related]
2. Broflanilide: A meta-diamide insecticide with a novel mode of action. Nakao T; Banba S Bioorg Med Chem; 2016 Feb; 24(3):372-7. PubMed ID: 26361738 [TBL] [Abstract][Full Text] [Related]
3. Variation in the toxicity of a novel meta-diamide insecticide, broflanilide, among thrips pest species and developmental stages. Chen JC; Cao LJ; Sun LN; Gao YF; Cao HQ; Ma ZZ; Ma LJ; Shen XJ; Wang JX; Gong YJ; Hoffmann AA; Wei SJ Pest Manag Sci; 2022 Dec; 78(12):5090-5096. PubMed ID: 36102347 [TBL] [Abstract][Full Text] [Related]
4. Novel meta-diamide insecticide, broflanilide, suppresses the population of common cutworm Spodoptera litura through its lethal and sublethal effects. Shen N; Liu HY; Mou TY; Ma YB; Li Y; Song ZJ; Tang T; Han ZJ; Zhao CQ Pest Manag Sci; 2022 Mar; 78(3):1081-1089. PubMed ID: 34786809 [TBL] [Abstract][Full Text] [Related]
5. Broflanilide, a Meta-Diamide Insecticide Seed Treatment for Protection of Wheat and Mortality of Wireworms (Agriotes obscurus) in the Field. van Herk WG; Vernon RS; Goudis L; Mitchell T J Econ Entomol; 2021 Feb; 114(1):161-173. PubMed ID: 33140830 [TBL] [Abstract][Full Text] [Related]
6. Protection of Potatoes and Mortality of Wireworms (Agriotes obscurus) With Various Application Methods of Broflanilide, a Novel Meta-Diamide Insecticide. van Herk WG; Vernon RS; Goudis L; Mitchell T J Econ Entomol; 2022 Dec; 115(6):1930-1946. PubMed ID: 36222544 [TBL] [Abstract][Full Text] [Related]
7. Photolysis of the novel meta-diamide insecticide broflanilide in solutions: Kinetics, degradation pathway, DFT calculation and ecotoxicity assessment. Wang Z; Li C; Wang Y; Chen Z; Wang M; Shi H Chemosphere; 2023 Apr; 320():138060. PubMed ID: 36754300 [TBL] [Abstract][Full Text] [Related]
8. A retrospective look at anthranilic diamide insecticides: discovery and lead optimization to chlorantraniliprole and cyantraniliprole. Selby TP; Lahm GP; Stevenson TM Pest Manag Sci; 2017 Apr; 73(4):658-665. PubMed ID: 27146435 [TBL] [Abstract][Full Text] [Related]
9. Acute toxicity, bioconcentration, elimination, action mode and detoxification metabolism of broflanilide in zebrafish, Danio rerio. Jia ZQ; Zhang YC; Huang QT; Jones AK; Han ZJ; Zhao CQ J Hazard Mater; 2020 Jul; 394():122521. PubMed ID: 32279005 [TBL] [Abstract][Full Text] [Related]
10. Minireview: Mode of action of meta-diamide insecticides. Nakao T; Banba S Pestic Biochem Physiol; 2015 Jun; 121():39-46. PubMed ID: 26047110 [TBL] [Abstract][Full Text] [Related]
11. Wireworm (Coleoptera: Elateridae) intoxication symptoms indicate the postharvest presence of broflanilide residues in soil collected from potato fields. van Herk WG; Warren RL; Bailey T J Econ Entomol; 2023 Dec; 116(6):1998-2008. PubMed ID: 37942675 [TBL] [Abstract][Full Text] [Related]
12. The mode of action of isocycloseram: A novel isoxazoline insecticide. Blythe J; Earley FGP; Piekarska-Hack K; Firth L; Bristow J; Hirst EA; Goodchild JA; Hillesheim E; Crossthwaite AJ Pestic Biochem Physiol; 2022 Oct; 187():105217. PubMed ID: 36127059 [TBL] [Abstract][Full Text] [Related]
13. Design, Synthesis, and Properties of Silicon-Containing Quan X; Xu L; Li Z; Maienfisch P J Agric Food Chem; 2023 Nov; 71(47):18188-18196. PubMed ID: 37191337 [TBL] [Abstract][Full Text] [Related]
15. Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant fall armyworm, Spodoptera frugiperda. Boaventura D; Bolzan A; Padovez FE; Okuma DM; Omoto C; Nauen R Pest Manag Sci; 2020 Jan; 76(1):47-54. PubMed ID: 31157506 [TBL] [Abstract][Full Text] [Related]
16. Application of computational methods in the analysis of pesticide target-site and resistance mechanisms. Banba S J Pestic Sci; 2021 Aug; 46(3):283-289. PubMed ID: 34566463 [No Abstract] [Full Text] [Related]
17. Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Troczka BJ; Williamson MS; Field LM; Davies TGE Neurotoxicology; 2017 May; 60():224-233. PubMed ID: 27246647 [TBL] [Abstract][Full Text] [Related]
18. CRISPR/Cas9 mediated G4946E substitution in the ryanodine receptor of Spodoptera exigua confers high levels of resistance to diamide insecticides. Zuo Y; Wang H; Xu Y; Huang J; Wu S; Wu Y; Yang Y Insect Biochem Mol Biol; 2017 Oct; 89():79-85. PubMed ID: 28912111 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila. Douris V; Papapostolou KM; Ilias A; Roditakis E; Kounadi S; Riga M; Nauen R; Vontas J Insect Biochem Mol Biol; 2017 Aug; 87():127-135. PubMed ID: 28669775 [TBL] [Abstract][Full Text] [Related]
20. Golden age of RyR and GABA-R diamide and isoxazoline insecticides: common genesis, serendipity, surprises, selectivity, and safety. Casida JE Chem Res Toxicol; 2015 Apr; 28(4):560-6. PubMed ID: 25688713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]