These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31148938)
21. Simultaneous determination of broflanilide and its metabolites in five typical Chinese soils by a modified quick, easy, cheap, effective, rugged, and safe method with ultra high performance liquid chromatography and tandem mass spectrometry. An X; Xu J; Dong F; Liu X; Wu X; Wang R; Zheng Y J Sep Sci; 2018 Dec; 41(24):4515-4524. PubMed ID: 30358086 [TBL] [Abstract][Full Text] [Related]
22. Identification of the ryanodine receptor mutation I4743M and its contribution to diamide insecticide resistance in Spodoptera exigua (Lepidoptera: Noctuidae). Zuo YY; Ma HH; Lu WJ; Wang XL; Wu SW; Nauen R; Wu YD; Yang YH Insect Sci; 2020 Aug; 27(4):791-800. PubMed ID: 31140744 [TBL] [Abstract][Full Text] [Related]
23. Diamide insecticide target site specificity in the Heliothis and Musca ryanodine receptors relative to toxicity. Qi S; Lümmen P; Nauen R; Casida JE J Agric Food Chem; 2014 May; 62(18):4077-82. PubMed ID: 24745606 [TBL] [Abstract][Full Text] [Related]
24. Effects of three diamides (chlorantraniliprole, cyantraniliprole and flubendiamide) on life history, embryonic development and oxidative stress biomarkers of Daphnia magna. Cui F; Chai T; Qian L; Wang C Chemosphere; 2017 Feb; 169():107-116. PubMed ID: 27870931 [TBL] [Abstract][Full Text] [Related]
25. Discovery of flometoquin, a novel quinoline insecticide. Kobayashi T; Hotta H; Miyake T; Nomura M; Horikoshi R; Yamamoto K J Pestic Sci; 2023 Nov; 48(4):168-174. PubMed ID: 38090218 [TBL] [Abstract][Full Text] [Related]
26. IRAC: Mode of action classification and insecticide resistance management. Sparks TC; Nauen R Pestic Biochem Physiol; 2015 Jun; 121():122-8. PubMed ID: 26047120 [TBL] [Abstract][Full Text] [Related]
27. Monitoring and mechanisms of insecticide resistance in Chilo suppressalis (Lepidoptera: Crambidae), with special reference to diamides. Yao R; Zhao DD; Zhang S; Zhou LQ; Wang X; Gao CF; Wu SF Pest Manag Sci; 2017 Jun; 73(6):1169-1178. PubMed ID: 27624654 [TBL] [Abstract][Full Text] [Related]
28. Synthesis, insecticidal evaluation and mode of action of novel anthranilic diamide derivatives containing sulfur moiety as potential ryanodine receptor activators. Li FY; Wang YH; Liu JB; Li YX; Li ZM Bioorg Med Chem; 2019 Mar; 27(5):769-776. PubMed ID: 30679133 [TBL] [Abstract][Full Text] [Related]
29. Homology modeling and docking study of diamondback moth ryanodine receptor reveals the mechanisms for channel activation, insecticide binding and resistance. Lin L; Hao Z; Cao P; Yuchi Z Pest Manag Sci; 2020 Apr; 76(4):1291-1303. PubMed ID: 31595631 [TBL] [Abstract][Full Text] [Related]
30. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Steinbach D; Gutbrod O; Lümmen P; Matthiesen S; Schorn C; Nauen R Insect Biochem Mol Biol; 2015 Aug; 63():14-22. PubMed ID: 25976541 [TBL] [Abstract][Full Text] [Related]
31. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists. Nakao T; Banba S; Nomura M; Hirase K Insect Biochem Mol Biol; 2013 Apr; 43(4):366-75. PubMed ID: 23416568 [TBL] [Abstract][Full Text] [Related]
32. Field-Evolved Resistance and Cross-Resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) Populations to Diamide Insecticides. Silva JE; Assis CP; Ribeiro LM; Siqueira HA J Econ Entomol; 2016 Oct; 109(5):2190-2195. PubMed ID: 27427509 [TBL] [Abstract][Full Text] [Related]
34. Effects of Diamide Insecticides on Predators in Soybean. Whalen RA; Herbert DA; Malone S; Kuhar TP; Brewster CC; Reisig DD J Econ Entomol; 2016 Oct; 109(5):2014-9. PubMed ID: 27522043 [TBL] [Abstract][Full Text] [Related]
35. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster. Sarkar S; Roy S Environ Monit Assess; 2017 Oct; 189(11):557. PubMed ID: 29030761 [TBL] [Abstract][Full Text] [Related]
36. Susceptibility of Helicoverpa zea (Lepidoptera: Noctuidae) Neonates to Diamide Insecticides in the Midsouthern and Southeastern United States. Adams A; Gore J; Catchot A; Musser F; Cook D; Krishnan N; Irby T J Econ Entomol; 2016 Oct; 109(5):2205-9. PubMed ID: 27524821 [TBL] [Abstract][Full Text] [Related]
37. Ryanodine receptor mutations (G4946E and I4790K) differentially responsible for diamide insecticide resistance in diamondback moth, Plutella xylostella L. Jouraku A; Kuwazaki S; Miyamoto K; Uchiyama M; Kurokawa T; Mori E; Mori MX; Mori Y; Sonoda S Insect Biochem Mol Biol; 2020 Mar; 118():103308. PubMed ID: 31863874 [TBL] [Abstract][Full Text] [Related]
38. Susceptibility of Tuta absoluta (Lepidoptera: Gelechiidae) Brazilian populations to ryanodine receptor modulators. Campos MR; Silva TB; Silva WM; Silva JE; Siqueira HA Pest Manag Sci; 2015 Apr; 71(4):537-44. PubMed ID: 24863675 [TBL] [Abstract][Full Text] [Related]
39. Feeding cessation effects of chlorantraniliprole, a new anthranilic diamide insecticide, in comparison with several insecticides in distinct chemical classes and mode-of-action groups. Hannig GT; Ziegler M; Marçon PG Pest Manag Sci; 2009 Sep; 65(9):969-74. PubMed ID: 19449341 [TBL] [Abstract][Full Text] [Related]
40. Susceptibility of standard clones and European field populations of the green peach aphid, Myzus persicae, and the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), to the novel anthranilic diamide insecticide cyantraniliprole. Foster SP; Denholm I; Rison JL; Portillo HE; Margaritopoulis J; Slater R Pest Manag Sci; 2012 Apr; 68(4):629-33. PubMed ID: 22045565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]