BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31149357)

  • 1. Change of Cognitive Functions after Stroke with Rehabilitation Systems.
    Baltaduonienė D; Kubilius R; Berškienė K; Vitkus L; Petruševičienė D
    Transl Neurosci; 2019; 10():118-124. PubMed ID: 31149357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Home-based (virtual) rehabilitation improves motor and cognitive function for stroke patients: a randomized controlled trial of the Elements (EDNA-22) system.
    Wilson PH; Rogers JM; Vogel K; Steenbergen B; McGuckian TB; Duckworth J
    J Neuroeng Rehabil; 2021 Nov; 18(1):165. PubMed ID: 34823545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group cognitive-behavioural programme to reduce the impact of rheumatoid arthritis fatigue: the RAFT RCT with economic and qualitative evaluations.
    Hewlett S; Almeida C; Ambler N; Blair PS; Choy E; Dures E; Hammond A; Hollingworth W; Kadir B; Kirwan J; Plummer Z; Rooke C; Thorn J; Turner N; Pollock J
    Health Technol Assess; 2019 Oct; 23(57):1-130. PubMed ID: 31601357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial.
    Saposnik G; Cohen LG; Mamdani M; Pooyania S; Ploughman M; Cheung D; Shaw J; Hall J; Nord P; Dukelow S; Nilanont Y; De Los Rios F; Olmos L; Levin M; Teasell R; Cohen A; Thorpe K; Laupacis A; Bayley M;
    Lancet Neurol; 2016 Sep; 15(10):1019-27. PubMed ID: 27365261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke: a randomized controlled trial.
    Long Y; Ouyang RG; Zhang JQ
    J Neuroeng Rehabil; 2020 Nov; 17(1):150. PubMed ID: 33187532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can specific virtual reality combined with conventional rehabilitation improve poststroke hand motor function? A randomized clinical trial.
    Rodríguez-Hernández M; Polonio-López B; Corregidor-Sánchez AI; Martín-Conty JL; Mohedano-Moriano A; Criado-Álvarez JJ
    J Neuroeng Rehabil; 2023 Apr; 20(1):38. PubMed ID: 37016408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of two cognitive interventions for adults experiencing executive dysfunction post-stroke: a pilot study.
    Poulin V; Korner-Bitensky N; Bherer L; Lussier M; Dawson DR
    Disabil Rehabil; 2017 Jan; 39(1):1-13. PubMed ID: 26750772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a randomized controlled trial.
    Huang Q; Wu W; Chen X; Wu B; Wu L; Huang X; Jiang S; Huang L
    Trials; 2019 Feb; 20(1):104. PubMed ID: 30728055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke.
    Thielbar KO; Lord TJ; Fischer HC; Lazzaro EC; Barth KC; Stoykov ME; Triandafilou KM; Kamper DG
    J Neuroeng Rehabil; 2014 Dec; 11():171. PubMed ID: 25542201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computerized cognitive training using virtual reality on everyday life activities for patients recovering from stroke.
    Oliveira J; Gamito P; Lopes B; Silva AR; Galhordas J; Pereira E; Ramos E; Silva AP; Jorge Á; Fantasia A
    Disabil Rehabil Assist Technol; 2022 Apr; 17(3):298-303. PubMed ID: 32255695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Goal-oriented cognitive rehabilitation for early-stage Alzheimer's and related dementias: the GREAT RCT.
    Clare L; Kudlicka A; Oyebode JR; Jones RW; Bayer A; Leroi I; Kopelman M; James IA; Culverwell A; Pool J; Brand A; Henderson C; Hoare Z; Knapp M; Morgan-Trimmer S; Burns A; Corbett A; Whitaker R; Woods B
    Health Technol Assess; 2019 Mar; 23(10):1-242. PubMed ID: 30879470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group cognitive rehabilitation to reduce the psychological impact of multiple sclerosis on quality of life: the CRAMMS RCT.
    Lincoln NB; Bradshaw LE; Constantinescu CS; Day F; Drummond AE; Fitzsimmons D; Harris S; Montgomery AA; das Nair R
    Health Technol Assess; 2020 Jan; 24(4):1-182. PubMed ID: 31934845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rehabilitation efficacy comparison of virtual reality technology and computer-assisted cognitive rehabilitation in patients with post-stroke cognitive impairment: A network meta-analysis.
    Xiao Z; Wang Z; Ge S; Zhong Y; Zhang W
    J Clin Neurosci; 2022 Sep; 103():85-91. PubMed ID: 35849864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System.
    Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study.
    Rogers JM; Duckworth J; Middleton S; Steenbergen B; Wilson PH
    J Neuroeng Rehabil; 2019 May; 16(1):56. PubMed ID: 31092252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Birmingham Rehabilitation Uptake Maximisation Study (BRUM). Home-based compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence.
    Jolly K; Taylor R; Lip GY; Greenfield S; Raftery J; Mant J; Lane D; Jones M; Lee KW; Stevens A
    Health Technol Assess; 2007 Sep; 11(35):1-118. PubMed ID: 17767899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial.
    Schuster-Amft C; Eng K; Lehmann I; Schmid L; Kobashi N; Thaler I; Verra ML; Henneke A; Signer S; McCaskey M; Kiper D
    Trials; 2014 Sep; 15():350. PubMed ID: 25194928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A group memory rehabilitation programme for people with traumatic brain injuries: the ReMemBrIn RCT.
    das Nair R; Bradshaw LE; Carpenter H; Clarke S; Day F; Drummond A; Fitzsimmons D; Harris S; Montgomery AA; Newby G; Sackley C; Lincoln NB
    Health Technol Assess; 2019 Apr; 23(16):1-194. PubMed ID: 31032782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effectiveness of brain-computer interfaces and cognitive training using computer technologies in restoring cognitive functions in patients after stroke].
    Kotov SV; Slyunkova EV; Borisova VA; Isakova EV
    Zh Nevrol Psikhiatr Im S S Korsakova; 2022; 122(12. Vyp. 2):67-75. PubMed ID: 36582164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive Training With Head-Mounted Display Virtual Reality in Neurorehabilitation: Pilot Randomized Controlled Trial.
    Specht J; Stegmann B; Gross H; Krakow K
    JMIR Serious Games; 2023 Jul; 11():e45816. PubMed ID: 37477957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.