These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling. Rohrbach A; Schmidt MW Nature; 2011 Apr; 472(7342):209-12. PubMed ID: 21441908 [TBL] [Abstract][Full Text] [Related]
5. Key new pieces of the HIMU puzzle from olivines and diamond inclusions. Weiss Y; Class C; Goldstein SL; Hanyu T Nature; 2016 Sep; 537(7622):666-670. PubMed ID: 27595333 [TBL] [Abstract][Full Text] [Related]
6. Slab melting as a barrier to deep carbon subduction. Thomson AR; Walter MJ; Kohn SC; Brooker RA Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593 [TBL] [Abstract][Full Text] [Related]
7. Blue boron-bearing diamonds from Earth's lower mantle. Smith EM; Shirey SB; Richardson SH; Nestola F; Bullock ES; Wang J; Wang W Nature; 2018 Aug; 560(7716):84-87. PubMed ID: 30068951 [TBL] [Abstract][Full Text] [Related]
8. Formation of diamond in the Earth's mantle. Stachel T; Harris JW J Phys Condens Matter; 2009 Sep; 21(36):364206. PubMed ID: 21832312 [TBL] [Abstract][Full Text] [Related]
9. Fossilized Melts in Mantle Wedge Peridotites. Naemura K; Hirajima T; Svojtka M; Shimizu I; Iizuka T Sci Rep; 2018 Jul; 8(1):10116. PubMed ID: 29973610 [TBL] [Abstract][Full Text] [Related]
10. Carbonate-rich crust subduction drives the deep carbon and chlorine cycles. Chen C; Förster MW; Foley SF; Shcheka SS Nature; 2023 Aug; 620(7974):576-581. PubMed ID: 37558874 [TBL] [Abstract][Full Text] [Related]
12. Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor. Smith EM; Ni P; Shirey SB; Richardson SH; Wang W; Shahar A Sci Adv; 2021 Mar; 7(14):. PubMed ID: 33789901 [TBL] [Abstract][Full Text] [Related]
13. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Kerrick DM; Connolly JA Nature; 2001 May; 411(6835):293-6. PubMed ID: 11357128 [TBL] [Abstract][Full Text] [Related]
14. Origin of magmas in subduction zones: a review of experimental studies. Kushiro I Proc Jpn Acad Ser B Phys Biol Sci; 2007 Feb; 83(1):1-15. PubMed ID: 24019580 [TBL] [Abstract][Full Text] [Related]
15. Coupled deep-mantle carbon-water cycle: Evidence from lower-mantle diamonds. Wang W; Tschauner O; Huang S; Wu Z; Meng Y; Bechtel H; Mao HK Innovation (Camb); 2021 May; 2(2):100117. PubMed ID: 34557764 [TBL] [Abstract][Full Text] [Related]
16. Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc serpentinites of the Dominican Republic. Pagé L; Hattori K Sci Rep; 2017 Dec; 7(1):17776. PubMed ID: 29259321 [TBL] [Abstract][Full Text] [Related]
17. Implications for metal and volatile cycles from the pH of subduction zone fluids. Galvez ME; Connolly JA; Manning CE Nature; 2016 Nov; 539(7629):420-424. PubMed ID: 27853207 [TBL] [Abstract][Full Text] [Related]
18. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Wood BJ; Bryndzia LT; Johnson KE Science; 1990 Apr; 248(4953):337-45. PubMed ID: 17784487 [TBL] [Abstract][Full Text] [Related]
19. Primary carbonatite melt from deeply subducted oceanic crust. Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105 [TBL] [Abstract][Full Text] [Related]
20. Melting of subducted sediments reconciles geophysical images of subduction zones. Förster MW; Selway K Nat Commun; 2021 Feb; 12(1):1320. PubMed ID: 33637742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]