These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31149799)

  • 1. Growth of Bouquet-like Zn
    Zhou J; Zhang W; Zhao H; Tian J; Zhu Z; Lin N; Qian Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22371-22379. PubMed ID: 31149799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Properties and Sodium-Storage Mechanism of Ag2 Mo2 O7 as the Anode Material for Sodium-Ion Batteries.
    Chen N; Gao Y; Zhang M; Meng X; Wang C; Wei Y; Du F; Chen G
    Chemistry; 2016 May; 22(21):7248-54. PubMed ID: 27061105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries.
    Wang R; Wu S; Lv Y; Lin Z
    Langmuir; 2014 Jul; 30(27):8215-20. PubMed ID: 24937774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion Chemistry of Cobalt Oxalate for Sodium Storage.
    Jo CH; Yashiro H; Yuan S; Shi L; Myung ST
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40523-40530. PubMed ID: 30371051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure Interlacing and Pore Engineering of Zn2GeO4 Nanofibers for Achieving High Capacity and Rate Capability as an Anode Material of Lithium Ion Batteries.
    Wang W; Qin J; Cao M
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1388-97. PubMed ID: 26709720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.
    Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and Electrochemical Reaction Mechanism Investigations of Rodlike CoMoO
    Ali G; Islam M; Kim JY; Jung HG; Chung KY
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):3843-3851. PubMed ID: 30582686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-Free Porous Zn
    Li HH; Wu XL; Zhang LL; Fan CY; Wang HF; Li XY; Sun HZ; Zhang JP; Yan Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31722-31728. PubMed ID: 27805360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-Induced in situ synthesis of Zn2GeO4/N-doped graphene nanocomposites and their lithium-storage properties.
    Zou F; Hu X; Sun Y; Luo W; Xia F; Qie L; Jiang Y; Huang Y
    Chemistry; 2013 May; 19(19):6027-33. PubMed ID: 23495087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the mechanism of sodium ion storage for needle-shaped Zn
    Islam M; Ali G; Jeong MG; Kim HS; Choi W; Chung KY; Jung HG
    Nanoscale; 2019 Jan; 11(3):1065-1073. PubMed ID: 30569933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-Assisted Metal-Organic Frameworks Derived Synthesis of Zn
    Guo C; Chen S; Aslam J; Li J; Lv LP; Sun W; Cao W; Wang Y
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37111018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Structural Evolution of Zn
    Liu W; Zhou T; Zheng Y; Liu J; Feng C; Shen Y; Huang Y; Guo Z
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9778-9784. PubMed ID: 28248090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium insertion/extraction investigations into zinc ferrite nanospheres as a high performance anode material.
    Alshahrani T
    RSC Adv; 2021 Mar; 11(17):9797-9806. PubMed ID: 35423532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CTAB-assisted growth of self-supported Zn
    Gao G; Xiang Y; Lu S; Dong B; Chen S; Shi L; Wang Y; Wu H; Li Z; Abdelkader A; Xi K; Ding S
    Nanoscale; 2018 Jan; 10(3):921-929. PubMed ID: 29165476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Encapsulating α-MnS into N,S-Codoped Nanotube-Like Carbon as Advanced Anode Material: α → β Phase Transition Promoted Cycling Stability and Superior Li/Na-Storage Performance in Half/Full Cells.
    Liu DH; Li WH; Zheng YP; Cui Z; Yan X; Liu DS; Wang J; Zhang Y; Lü HY; Bai FY; Guo JZ; Wu XL
    Adv Mater; 2018 May; 30(21):e1706317. PubMed ID: 29611231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries.
    Chen J; Ru Q; Mo Y; Hu S; Hou X
    Phys Chem Chem Phys; 2016 Jul; 18(28):18949-57. PubMed ID: 27353639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotubes coupled with layered graphite to support SnTe nanodots as high-rate and ultra-stable lithium-ion battery anodes.
    Chen H; Ke G; Wu X; Li W; Mi H; Li Y; Sun L; Zhang Q; He C; Ren X
    Nanoscale; 2021 Feb; 13(6):3782-3789. PubMed ID: 33564809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Phosphorus-Graphite Dual-Ion Battery.
    Yu D; Cheng L; Chen M; Wang J; Zhou W; Wei W; Wang H
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45755-45762. PubMed ID: 31729853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.