These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 31149811)
21. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time-Ion Mobility Mass Spectrometry. Blaženović I; Shen T; Mehta SS; Kind T; Ji J; Piparo M; Cacciola F; Mondello L; Fiehn O Anal Chem; 2018 Sep; 90(18):10758-10764. PubMed ID: 30096227 [TBL] [Abstract][Full Text] [Related]
22. Flow Injection-Traveling-Wave Ion Mobility-Mass Spectrometry for Prostate-Cancer Metabolomics. Zang X; Monge ME; Gaul DA; Fernández FM Anal Chem; 2018 Nov; 90(22):13767-13774. PubMed ID: 30379062 [TBL] [Abstract][Full Text] [Related]
23. Characterization of spironolactone and metabolites derivatized using Girard's reagent P using mass spectrometry and ion mobility spectrometry. Jones SM; Kirkwood-Donelson KI; Alexander GM; Perera L; Dudek SM; Jarmusch AK Rapid Commun Mass Spectrom; 2024 Aug; 38(15):e9775. PubMed ID: 38807480 [TBL] [Abstract][Full Text] [Related]
24. Rapid profiling method for the analysis of lipids in human plasma using ion mobility enabled-reversed phase-ultra high performance liquid chromatography/mass spectrometry. King AM; Trengove RD; Mullin LG; Rainville PD; Isaac G; Plumb RS; Gethings LA; Wilson ID J Chromatogr A; 2020 Jan; 1611():460597. PubMed ID: 31619360 [TBL] [Abstract][Full Text] [Related]
25. Microalgae lipid characterization. Yao L; Gerde JA; Lee SL; Wang T; Harrata KA J Agric Food Chem; 2015 Feb; 63(6):1773-87. PubMed ID: 25608629 [TBL] [Abstract][Full Text] [Related]
26. Development and application of a fast ultra-high performance liquid chromatography-trapped ion mobility mass spectrometry method for untargeted lipidomics. Merciai F; Musella S; Sommella E; Bertamino A; D'Ursi AM; Campiglia P J Chromatogr A; 2022 Jun; 1673():463124. PubMed ID: 35567813 [TBL] [Abstract][Full Text] [Related]
27. The potential of nuclear magnetic resonance (NMR) in metabolomics and lipidomics of microalgae- a review. Bisht B; Kumar V; Gururani P; Tomar MS; Nanda M; Vlaskin MS; Kumar S; Kurbatova A Arch Biochem Biophys; 2021 Oct; 710():108987. PubMed ID: 34260946 [TBL] [Abstract][Full Text] [Related]
28. Chemical Derivatization and Ultrahigh Resolution and Accurate Mass Spectrometry Strategies for "Shotgun" Lipidome Analysis. Ryan E; Reid GE Acc Chem Res; 2016 Sep; 49(9):1596-604. PubMed ID: 27575732 [TBL] [Abstract][Full Text] [Related]
29. Simultaneous Profiling and Holistic Comparison of the Metabolomes among the Flower Buds of Jia L; Zuo T; Zhang C; Li W; Wang H; Hu Y; Wang X; Qian Y; Yang W; Yu H Molecules; 2019 Jun; 24(11):. PubMed ID: 31212627 [TBL] [Abstract][Full Text] [Related]
30. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility-Mass Spectrometry-Based Lipidomics. Zhou Z; Tu J; Xiong X; Shen X; Zhu ZJ Anal Chem; 2017 Sep; 89(17):9559-9566. PubMed ID: 28764323 [TBL] [Abstract][Full Text] [Related]
31. Trapped ion mobility spectrometry-mass spectrometry improves the coverage and accuracy of four-dimensional untargeted lipidomics. Chen X; Yin Y; Luo M; Zhou Z; Cai Y; Zhu ZJ Anal Chim Acta; 2022 Jun; 1210():339886. PubMed ID: 35595363 [TBL] [Abstract][Full Text] [Related]
32. Integration of Data-Dependent Acquisition (DDA) and Data-Independent High-Definition MS Zhang C; Zuo T; Wang X; Wang H; Hu Y; Li Z; Li W; Jia L; Qian Y; Yang W; Yu H Molecules; 2019 Jul; 24(15):. PubMed ID: 31349632 [TBL] [Abstract][Full Text] [Related]
33. Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Zhou Z; Tu J; Zhu ZJ Curr Opin Chem Biol; 2018 Feb; 42():34-41. PubMed ID: 29136580 [TBL] [Abstract][Full Text] [Related]
34. The occurrence of inositolphosphoceramides in spirulina microalgae. Calvano CD; Coniglio D; D'Alesio PE; Losito I; Cataldi TRI Electrophoresis; 2020 Oct; 41(20):1760-1767. PubMed ID: 32297342 [TBL] [Abstract][Full Text] [Related]
35. Untargeted Differential Metabolomics Analysis Using Drift Tube Ion Mobility-Mass Spectrometry. Reisdorph R; Michel C; Quinn K; Doenges K; Reisdorph N Methods Mol Biol; 2020; 2084():55-78. PubMed ID: 31729653 [TBL] [Abstract][Full Text] [Related]
36. Performance comparison of electrospray ionization and atmospheric pressure chemical ionization in untargeted and targeted liquid chromatography/mass spectrometry based metabolomics analysis of grapeberry metabolites. Commisso M; Anesi A; Dal Santo S; Guzzo F Rapid Commun Mass Spectrom; 2017 Feb; 31(3):292-300. PubMed ID: 27935129 [TBL] [Abstract][Full Text] [Related]
37. A re-calibration procedure for interoperable lipid collision cross section values measured by traveling wave ion mobility spectrometry. George AC; Schmitz-Afonso I; Marie V; Colsch B; Fenaille F; Afonso C; Loutelier-Bourhis C Anal Chim Acta; 2022 Sep; 1226():340236. PubMed ID: 36068052 [TBL] [Abstract][Full Text] [Related]
38. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Perez de Souza L; Alseekh S; Scossa F; Fernie AR Nat Methods; 2021 Jul; 18(7):733-746. PubMed ID: 33972782 [TBL] [Abstract][Full Text] [Related]
39. The Impact of Different Drying Methods on the Metabolomic and Lipidomic Profiles of Mróz M; Parchem K; Jóźwik J; Domingues MR; Kusznierewicz B Molecules; 2024 Apr; 29(8):. PubMed ID: 38675566 [TBL] [Abstract][Full Text] [Related]