BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31149835)

  • 1. Extended Multiplicative Signal Correction for Infrared Microspectroscopy of Heterogeneous Samples with Cylindrical Domains.
    Rasskazov IL; Singh R; Carney PS; Bhargava R
    Appl Spectrosc; 2019 Aug; 73(8):859-869. PubMed ID: 31149835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mie scatter corrections in single cell infrared microspectroscopy.
    Konevskikh T; Lukacs R; Blümel R; Ponossov A; Kohler A
    Faraday Discuss; 2016 Jun; 187():235-57. PubMed ID: 27034998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating and correcting mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction.
    Kohler A; Sulé-Suso J; Sockalingum GD; Tobin M; Bahrami F; Yang Y; Pijanka J; Dumas P; Cotte M; van Pittius DG; Parkes G; Martens H
    Appl Spectrosc; 2008 Mar; 62(3):259-66. PubMed ID: 18339231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RMieS-EMSC correction for infrared spectra of biological cells: extension using full Mie theory and GPU computing.
    Bassan P; Kohler A; Martens H; Lee J; Jackson E; Lockyer N; Dumas P; Brown M; Clarke N; Gardner P
    J Biophotonics; 2010 Aug; 3(8-9):609-20. PubMed ID: 20414907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTIR microscopy of biological cells and tissue: data analysis using resonant Mie scattering (RMieS) EMSC algorithm.
    Bassan P; Sachdeva A; Kohler A; Hughes C; Henderson A; Boyle J; Shanks JH; Brown M; Clarke NW; Gardner P
    Analyst; 2012 Mar; 137(6):1370-7. PubMed ID: 22318917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An open-source code for Mie extinction extended multiplicative signal correction for infrared microscopy spectra of cells and tissues.
    Solheim JH; Gunko E; Petersen D; Großerüschkamp F; Gerwert K; Kohler A
    J Biophotonics; 2019 Aug; 12(8):e201800415. PubMed ID: 30793501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering correction for samples with cylindrical domains measured with polarized infrared spectroscopy.
    Koziol P; Kosowska K; Korecki P; Wrobel TP
    Anal Chim Acta; 2023 Oct; 1278():341722. PubMed ID: 37709463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved algorithm for fast resonant Mie scatter correction of infrared spectra of cells and tissues.
    Konevskikh T; Lukacs R; Kohler A
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28792669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains.
    Diehn S; Zimmermann B; Tafintseva V; Bağcıoğlu M; Kohler A; Ohlson M; Fjellheim S; Kneipp J
    Anal Bioanal Chem; 2020 Sep; 412(24):6459-6474. PubMed ID: 32350580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of infrared microspectroscopy for intact fibers.
    Davis BJ; Carney PS; Bhargava R
    Anal Chem; 2011 Jan; 83(2):525-32. PubMed ID: 21158469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of absorption spectra from Fourier transform infrared (FT-IR) microspectroscopic measurements of intact spheres.
    van Dijk T; Mayerich D; Carney PS; Bhargava R
    Appl Spectrosc; 2013 May; 67(5):546-52. PubMed ID: 23643044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural network recovers pure absorbance spectra from highly scatter-distorted spectra of cells.
    Magnussen EA; Solheim JH; Blazhko U; Tafintseva V; Tøndel K; Liland KH; Dzurendova S; Shapaval V; Sandt C; Borondics F; Kohler A
    J Biophotonics; 2020 Dec; 13(12):e202000204. PubMed ID: 32844585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theory of mid-infrared absorption microspectroscopy: II. Heterogeneous samples.
    Davis BJ; Carney PS; Bhargava R
    Anal Chem; 2010 May; 82(9):3487-99. PubMed ID: 20392064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing inter-replicate variation in fourier transform infrared spectroscopy by extended multiplicative signal correction.
    Kohler A; Böcker U; Warringer J; Blomberg A; Omholt SW; Stark E; Martens H
    Appl Spectrosc; 2009 Mar; 63(3):296-305. PubMed ID: 19281645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light scattering and light absorbance separated by extended multiplicative signal correction. application to near-infrared transmission analysis of powder mixtures.
    Martens H; Nielsen JP; Engelsen SB
    Anal Chem; 2003 Feb; 75(3):394-404. PubMed ID: 12585463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics-based multiplicative scatter correction approaches for improving the performance of calibration models.
    Thennadil SN; Martens H; Kohler A
    Appl Spectrosc; 2006 Mar; 60(3):315-21. PubMed ID: 16608575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scattering correction by use of a priori information.
    Ottestad S; Isaksson T; Saeys W; Wold JP
    Appl Spectrosc; 2010 Jul; 64(7):795-804. PubMed ID: 20629270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting chemical information from spectral data with multiplicative light scattering effects by optical path-length estimation and correction.
    Chen ZP; Morris J; Martin E
    Anal Chem; 2006 Nov; 78(22):7674-81. PubMed ID: 17105158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FOURIER TRANSFORM INFRARED MICROSPECTROSCOPY AS A TOOL TO IDENTIFY MACROALGAL PROPAGULES(1).
    Bellgrove A; Kihara H; Iwata A; Aoki MN; Heraud P
    J Phycol; 2009 Jun; 45(3):560-70. PubMed ID: 27034032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated approach for fringe frequency estimation and removal in infrared spectroscopy and hyperspectral imaging of biological samples.
    Solheim JH; Borondics F; Zimmermann B; Sandt C; Muthreich F; Kohler A
    J Biophotonics; 2021 Dec; 14(12):e202100148. PubMed ID: 34468082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.