These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 31150025)
81. Effect of operating parameters on the physical and chemical stability of an oil gelled-in-water emulsified curcumin delivery system. Vellido-Perez JA; Ochando-Pulido JM; Brito-de la Fuente E; Martinez-Ferez A J Sci Food Agric; 2021 Dec; 101(15):6395-6406. PubMed ID: 33969886 [TBL] [Abstract][Full Text] [Related]
82. Antibacterial thyme oil-loaded organo-hydrogels utilizing cellulose acetoacetate as reactive polymer emulsifier. Rong L; Shen X; Wang B; Mao Z; Feng X; Sui X Int J Biol Macromol; 2020 Mar; 147():18-23. PubMed ID: 31917977 [TBL] [Abstract][Full Text] [Related]
83. Development of pea protein nanoparticle/hydrolyzed rice glutelin fibril emulsion gels for encapsulation of curcumin. Kong Z; Li Z; Zhang L; Dai L; Wang Y; Sun Q; McClements DJ; Cheng Y; Zhang Z; Wang C; Xu X Int J Biol Macromol; 2024 Sep; 276(Pt 1):133640. PubMed ID: 38969047 [TBL] [Abstract][Full Text] [Related]
84. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions. Liu Y; Lee WJ; Tan CP; Lai OM; Wang Y; Qiu C Food Chem; 2022 Mar; 372():131305. PubMed ID: 34653777 [TBL] [Abstract][Full Text] [Related]
85. Perilla seed oil high internal phase emulsion improve the gel properties of myofibrillar protein. Li B; Wang Y; Wang S; Chen S; Yang C; Liu L; Bi S; Zhou Y; Zhu Q Food Chem X; 2024 Mar; 21():101241. PubMed ID: 38434691 [TBL] [Abstract][Full Text] [Related]
86. Ovalbumin as an Outstanding Pickering Nanostabilizer for High Internal Phase Emulsions. Xu YT; Tang CH; Liu TX; Liu R J Agric Food Chem; 2018 Aug; 66(33):8795-8804. PubMed ID: 30044922 [TBL] [Abstract][Full Text] [Related]
87. High internal phase emulsion stabilized by sodium caseinate:quercetin complex as antioxidant emulsifier. Santos MAS; Fonseca LR; Okuro PK; Cunha RL Food Res Int; 2023 Nov; 173(Pt 1):113247. PubMed ID: 37803560 [TBL] [Abstract][Full Text] [Related]
88. Development of a High Internal Phase Emulsion of Antarctic Krill Oil Diluted by Soybean Oil Using Casein as a Co-Emulsifier. Liu Y; Fu D; Bi A; Wang S; Li X; Xu X; Song L Foods; 2021 Apr; 10(5):. PubMed ID: 33921961 [TBL] [Abstract][Full Text] [Related]
89. Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions. Opawale FO; Burgess DJ J Pharm Pharmacol; 1998 Sep; 50(9):965-73. PubMed ID: 9811156 [TBL] [Abstract][Full Text] [Related]
90. Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza. Wang L; Wang J; Wang A Foods; 2021 Mar; 10(3):. PubMed ID: 33809138 [TBL] [Abstract][Full Text] [Related]
91. Fabrication and characterization of antioxidant pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Wang LJ; Hu YQ; Yin SW; Yang XQ; Lai FR; Wang SQ J Agric Food Chem; 2015 Mar; 63(9):2514-24. PubMed ID: 25636210 [TBL] [Abstract][Full Text] [Related]
92. Thermo-induced changes in the structure of lentil protein isolate (Lens culinaris) to stabilize high internal phase emulsions. Galvão AMMT; Freitas JC; Karatay GGB; Furtado GF; Rasera ML; Tavares GM; Hubinger MD Int J Biol Macromol; 2023 Dec; 253(Pt 6):127313. PubMed ID: 37820922 [TBL] [Abstract][Full Text] [Related]
94. Storage stability and interfacial rheology analysis of high-internal-phase emulsions stabilized by soy hull polysaccharide. Yang H; Wang S; Xu Y; Wang S; Yang L; Song H; He Y; Liu H Food Chem; 2023 Aug; 418():135956. PubMed ID: 36958186 [TBL] [Abstract][Full Text] [Related]
95. Study on the fabrication and in vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates. Pan Y; Xie QT; Zhu J; Li XM; Meng R; Zhang B; Chen HQ; Jin ZY Food Chem; 2019 Jul; 287():76-84. PubMed ID: 30857721 [TBL] [Abstract][Full Text] [Related]
96. Effect of different isolation methods on structure and properties of lignin from valonea of Quercus variabilis. Yang L; Wang D; Zhou D; Zhang Y Int J Biol Macromol; 2016 Apr; 85():417-24. PubMed ID: 26772919 [TBL] [Abstract][Full Text] [Related]
97. One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using a Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. Chen H; Zhao R; Hu J; Wei Z; McClements DJ; Liu S; Li B; Li Y J Agric Food Chem; 2020 May; 68(19):5412-5425. PubMed ID: 32320613 [TBL] [Abstract][Full Text] [Related]
98. High internal phase emulsions stabilized solely by sonicated quinoa protein isolate at various pH values and concentrations. Zuo Z; Zhang X; Li T; Zhou J; Yang Y; Bian X; Wang L Food Chem; 2022 Jun; 378():132011. PubMed ID: 35042113 [TBL] [Abstract][Full Text] [Related]
99. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials. Terjung N; Löffler M; Gibis M; Hinrichs J; Weiss J Food Funct; 2012 Mar; 3(3):290-301. PubMed ID: 22183117 [TBL] [Abstract][Full Text] [Related]
100. High Internal Phase Emulsion for Food-Grade 3D Printing Materials. Li X; Xu X; Song L; Bi A; Wu C; Ma Y; Du M; Zhu B ACS Appl Mater Interfaces; 2020 Oct; 12(40):45493-45503. PubMed ID: 32871079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]