These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 31150230)
1. An Experimental and Modeling Study of Nanoparticle Formation and Growth from Dimethylamine and Nitric Acid. Chee S; Myllys N; Barsanti KC; Wong BM; Smith JN J Phys Chem A; 2019 Jul; 123(26):5640-5648. PubMed ID: 31150230 [TBL] [Abstract][Full Text] [Related]
2. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Rondo L; Ehrhart S; Kürten A; Adamov A; Bianchi F; Breitenlechner M; Duplissy J; Franchin A; Dommen J; Donahue NM; Dunne EM; Flagan RC; Hakala J; Hansel A; Keskinen H; Kim J; Jokinen T; Lehtipalo K; Leiminger M; Praplan A; Riccobono F; Rissanen MP; Sarnela N; Schobesberger S; Simon M; Sipilä M; Smith JN; Tomé A; Tröstl J; Tsagkogeorgas G; Vaattovaara P; Winkler PM; Williamson C; Wimmer D; Baltensperger U; Kirkby J; Kulmala M; Petäjä T; Worsnop DR; Curtius J J Geophys Res Atmos; 2016 Mar; 121(6):3036-3049. PubMed ID: 27610289 [TBL] [Abstract][Full Text] [Related]
3. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach. Liu Y; Cain JP; Wang H; Laskin A J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118 [TBL] [Abstract][Full Text] [Related]
4. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions. Kürten A; Jokinen T; Simon M; Sipilä M; Sarnela N; Junninen H; Adamov A; Almeida J; Amorim A; Bianchi F; Breitenlechner M; Dommen J; Donahue NM; Duplissy J; Ehrhart S; Flagan RC; Franchin A; Hakala J; Hansel A; Heinritzi M; Hutterli M; Kangasluoma J; Kirkby J; Laaksonen A; Lehtipalo K; Leiminger M; Makhmutov V; Mathot S; Onnela A; Petäjä T; Praplan AP; Riccobono F; Rissanen MP; Rondo L; Schobesberger S; Seinfeld JH; Steiner G; Tomé A; Tröstl J; Winkler PM; Williamson C; Wimmer D; Ye P; Baltensperger U; Carslaw KS; Kulmala M; Worsnop DR; Curtius J Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15019-24. PubMed ID: 25288761 [TBL] [Abstract][Full Text] [Related]
5. Characterization of condensed phase nitric acid particles formed in the gas phase. Jia L; Xu Y J Environ Sci (China); 2011; 23(3):412-8. PubMed ID: 21520810 [TBL] [Abstract][Full Text] [Related]
6. Uptake of water by an acid-base nanoparticle: theoretical and experimental studies of the methanesulfonic acid-methylamine system. Xu J; Perraud V; Finlayson-Pitts BJ; Gerber RB Phys Chem Chem Phys; 2018 Aug; 20(34):22249-22259. PubMed ID: 30123899 [TBL] [Abstract][Full Text] [Related]
8. IMS-MS and IMS-IMS investigation of the structure and stability of dimethylamine-sulfuric acid nanoclusters. Ouyang H; He S; Larriba-Andaluz C; Hogan CJ J Phys Chem A; 2015 Mar; 119(10):2026-36. PubMed ID: 25692213 [TBL] [Abstract][Full Text] [Related]
9. Ion mobility spectrometry-mass spectrometry examination of the structures, stabilities, and extents of hydration of dimethylamine-sulfuric acid clusters. Thomas JM; He S; Larriba-Andaluz C; DePalma JW; Johnston MV; Hogan CJ Phys Chem Chem Phys; 2016 Aug; 18(33):22962-72. PubMed ID: 27485283 [TBL] [Abstract][Full Text] [Related]
10. Formation of atmospheric molecular clusters containing nitric acid with ammonia, methylamine, and dimethylamine. Chen DP; Ma W; Yang CH; Li M; Zhou ZZ; Zhang Y; Wang XC; Quan ZJ Environ Sci Process Impacts; 2024 Nov; 26(11):2036-2050. PubMed ID: 39392062 [TBL] [Abstract][Full Text] [Related]
11. Uptake of HNO3 on aviation kerosene and aircraft engine soot: influences of H2O or/and H2SO4. Loukhovitskaya EE; Talukdar RK; Ravishankara AR J Phys Chem A; 2013 Jun; 117(23):4928-36. PubMed ID: 23682559 [TBL] [Abstract][Full Text] [Related]
12. Reactive Uptake of Dimethylamine by Ammonium Sulfate and Ammonium Sulfate-Sucrose Mixed Particles. Chu Y; Chan CK J Phys Chem A; 2017 Jan; 121(1):206-215. PubMed ID: 28026943 [TBL] [Abstract][Full Text] [Related]
13. Guanidine: A Highly Efficient Stabilizer in Atmospheric New-Particle Formation. Myllys N; Ponkkonen T; Passananti M; Elm J; Vehkamäki H; Olenius T J Phys Chem A; 2018 May; 122(20):4717-4729. PubMed ID: 29693391 [TBL] [Abstract][Full Text] [Related]
14. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Yao L; Garmash O; Bianchi F; Zheng J; Yan C; Kontkanen J; Junninen H; Mazon SB; Ehn M; Paasonen P; Sipilä M; Wang M; Wang X; Xiao S; Chen H; Lu Y; Zhang B; Wang D; Fu Q; Geng F; Li L; Wang H; Qiao L; Yang X; Chen J; Kerminen VM; Petäjä T; Worsnop DR; Kulmala M; Wang L Science; 2018 Jul; 361(6399):278-281. PubMed ID: 30026225 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor. Ranney AP; Ziemann PJ J Phys Chem A; 2016 Apr; 120(16):2561-8. PubMed ID: 27043733 [TBL] [Abstract][Full Text] [Related]
16. Mass accommodation of H2SO4 and CH3SO3H on water-sulfuric acid solutions from 6% to 97% RH. Hanson DR J Phys Chem A; 2005 Aug; 109(31):6919-27. PubMed ID: 16834049 [TBL] [Abstract][Full Text] [Related]
17. Reactions of Methanesulfonic Acid with Amines and Ammonia as a Source of New Particles in Air. Chen H; Varner ME; Gerber RB; Finlayson-Pitts BJ J Phys Chem B; 2016 Mar; 120(8):1526-36. PubMed ID: 26379061 [TBL] [Abstract][Full Text] [Related]
18. Quantitative and time-resolved nanoparticle composition measurements during new particle formation. Bzdek BR; Horan AJ; Pennington MR; DePalma JW; Zhao J; Jen CN; Hanson DR; Smith JN; de McMurry PH; Johnston MV Faraday Discuss; 2013; 165():25-43. PubMed ID: 24600995 [TBL] [Abstract][Full Text] [Related]
19. Dimethylamine as a major alkyl amine species in particles and cloud water: Observations in semi-arid and coastal regions. Youn JS; Crosbie E; Maudlin LC; Wang Z; Sorooshian A Atmos Environ (1994); 2015 Dec; 122():250-258. PubMed ID: 26807039 [TBL] [Abstract][Full Text] [Related]
20. Analysis of heterogeneous uptake by nanoparticles via differential mobility analysis-drift tube ion mobility spectrometry. Oberreit DR; McMurry PH; Hogan CJ Phys Chem Chem Phys; 2014 Apr; 16(15):6968-79. PubMed ID: 24600691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]