These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31150344)

  • 1. DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines.
    Li M; Wang Y; Zheng R; Shi X; Li Y; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):575-582. PubMed ID: 31150344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response.
    Shahzad M; Tahir MA; Alhussein M; Mobin A; Shams Malick RA; Anwar MS
    Diagnostics (Basel); 2023 Jun; 13(12):. PubMed ID: 37370938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drug response of tumors from integrated genomic profiles by deep neural networks.
    Chiu YC; Chen HH; Zhang T; Zhang S; Gorthi A; Wang LJ; Huang Y; Chen Y
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):18. PubMed ID: 30704458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures.
    Zuo Z; Wang P; Chen X; Tian L; Ge H; Qian D
    BMC Bioinformatics; 2021 Sep; 22(1):434. PubMed ID: 34507532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network.
    Liu P; Li H; Li S; Leung KS
    BMC Bioinformatics; 2019 Jul; 20(1):408. PubMed ID: 31357929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TransCDR: a deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion.
    Xia X; Zhu C; Zhong F; Liu L
    BMC Biol; 2024 Oct; 22(1):227. PubMed ID: 39385185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticancer Drug Response Prediction in Cell Lines Using Weighted Graph Regularized Matrix Factorization.
    Guan NN; Zhao Y; Wang CC; Li JQ; Chen X; Piao X
    Mol Ther Nucleic Acids; 2019 Sep; 17():164-174. PubMed ID: 31265947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties.
    Menden MP; Iorio F; Garnett M; McDermott U; Benes CH; Ballester PJ; Saez-Rodriguez J
    PLoS One; 2013; 8(4):e61318. PubMed ID: 23646105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model.
    Zhang N; Wang H; Fang Y; Wang J; Zheng X; Liu XS
    PLoS Comput Biol; 2015; 11(9):e1004498. PubMed ID: 26418249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of autoencoder and graph convolutional network for predicting breast cancer drug response.
    Abinas V; Abhinav U; Haneem EM; Vishnusankar A; Nazeer KAA
    J Bioinform Comput Biol; 2024 Jun; 22(3):2450013. PubMed ID: 39051144
    [No Abstract]   [Full Text] [Related]  

  • 19. Toward Explainable Anticancer Compound Sensitivity Prediction via Multimodal Attention-Based Convolutional Encoders.
    Manica M; Oskooei A; Born J; Subramanian V; Sáez-Rodríguez J; Rodríguez Martínez M
    Mol Pharm; 2019 Dec; 16(12):4797-4806. PubMed ID: 31618586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepCancerMap: A versatile deep learning platform for target- and cell-based anticancer drug discovery.
    Wu J; Xiao Y; Lin M; Cai H; Zhao D; Li Y; Luo H; Tang C; Wang L
    Eur J Med Chem; 2023 Jul; 255():115401. PubMed ID: 37116265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.