BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31150345)

  • 1. The Unconstrained Diameters of the Duplication-Loss Cost and the Loss Cost.
    Gorecki P; Eulenstein O; Tiuryn J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2125-2135. PubMed ID: 31150345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bijective Diameters of Gene Tree Parsimony Costs.
    Gorecki P; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1723-1727. PubMed ID: 28792904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algorithms: simultaneous error-correction and rooting for gene tree reconciliation and the gene duplication problem.
    Górecki P; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S14. PubMed ID: 22759419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence.
    Chaudhary R; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S11. PubMed ID: 22759416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring duplication episodes from unrooted gene trees.
    Paszek J; Górecki P
    BMC Genomics; 2018 May; 19(Suppl 5):288. PubMed ID: 29745844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing Deep Coalescence Cost.
    Górecki P; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):231-42. PubMed ID: 26355521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are the duplication cost and Robinson-Foulds distance equivalent?
    Zheng Y; Zhang L
    J Comput Biol; 2014 Aug; 21(8):578-90. PubMed ID: 24988427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unconstrained Diameters for Deep Coalescence.
    Pawel Gorecki P; Paszek J; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(5):1002-1012. PubMed ID: 26887001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
    Kordi M; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1077-1090. PubMed ID: 28622673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient algorithms for reconciling gene trees and species networks via duplication and loss events.
    To TH; Scornavacca C
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S6. PubMed ID: 26449687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural properties of the reconciliation space and their applications in enumerating nearly-optimal reconciliations between a gene tree and a species tree.
    Wu T; Zhang L
    BMC Bioinformatics; 2011 Oct; 12 Suppl 9(Suppl 9):S7. PubMed ID: 22151151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Most parsimonious reconciliation in the presence of gene duplication, loss, and deep coalescence using labeled coalescent trees.
    Wu YC; Rasmussen MD; Bansal MS; Kellis M
    Genome Res; 2014 Mar; 24(3):475-86. PubMed ID: 24310000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact median-tree inference for unrooted reconciliation costs.
    Górecki P; Markin A; Eulenstein O
    BMC Evol Biol; 2020 Oct; 20(Suppl 1):136. PubMed ID: 33115401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciliation Reconsidered: In Search of a Most Representative Reconciliation in the Duplication-Transfer-Loss Model.
    Grueter M; Duran K; Ramalingam R; Libeskind-Hadas R
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2136-2143. PubMed ID: 31722482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models.
    Bansal MS; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S42. PubMed ID: 20122216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Algorithms for Genomic Duplication Models.
    Paszek J; Gorecki P
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1515-1524. PubMed ID: 28541223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From gene trees to species trees II: species tree inference by minimizing deep coalescence events.
    Zhang L
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(6):1685-91. PubMed ID: 21576759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species Tree Estimation from Genome-Wide Data with guenomu.
    de Oliveira Martins L; Posada D
    Methods Mol Biol; 2017; 1525():461-478. PubMed ID: 27896732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconciling event-labeled gene trees with MUL-trees and species networks.
    Hellmuth M; Huber KT; Moulton V
    J Math Biol; 2019 Oct; 79(5):1885-1925. PubMed ID: 31410552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species.
    Rogers J; Fishberg A; Youngs N; Wu YC
    BMC Bioinformatics; 2017 Jun; 18(1):292. PubMed ID: 28583091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.