BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31150422)

  • 21. A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction.
    Lin CL; Hsu YC; Huang YT; Shih YH; Wang CJ; Chiang WC; Chang PJ
    EMBO Mol Med; 2019 May; 11(5):. PubMed ID: 30948420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Podocyte apoptosis in diabetic nephropathy by BASP1 activation of the p53 pathway via WT1.
    Zhang Y; Xu C; Ye Q; Tong L; Jiang H; Zhu X; Huang L; Lin W; Fu H; Wang J; Persson PB; Lai EY; Mao J
    Acta Physiol (Oxf); 2021 May; 232(1):e13634. PubMed ID: 33615732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.
    Susztak K; Raff AC; Schiffer M; Böttinger EP
    Diabetes; 2006 Jan; 55(1):225-33. PubMed ID: 16380497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inflammatory stress exacerbates lipid accumulation and podocyte injuries in diabetic nephropathy.
    Zhang Y; Ma KL; Liu J; Wu Y; Hu ZB; Liu L; Lu J; Zhang XL; Liu BC
    Acta Diabetol; 2015 Dec; 52(6):1045-56. PubMed ID: 25896009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Levels and Clinical Significances of Glypican-5 in Urine of Type 2 Diabetic Nephropathy Cases.
    Li R; Zhang L; Zhang S; Yang H; Yao B; Dong W; Zhang B; Chen Y; Liu S; Zhao X; Zhang Q; Shi W; Liang X
    Iran J Kidney Dis; 2019 May; 13(3):173-181. PubMed ID: 31209190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of Sirt1 promotes exosome secretion from podocytes by inhibiting lysosomal acidification in diabetic nephropathy.
    Ding L; Li ZL; Zhou Y; Liu NC; Liu SS; Zhang XJ; Liu CC; Zhang DJ; Wang GH; Ma RX
    Mol Cell Endocrinol; 2023 Jun; 568-569():111913. PubMed ID: 36990198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients.
    Delić D; Eisele C; Schmid R; Baum P; Wiech F; Gerl M; Zimdahl H; Pullen SS; Urquhart R
    PLoS One; 2016; 11(3):e0150154. PubMed ID: 26930277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy.
    Du P; Fan B; Han H; Zhen J; Shang J; Wang X; Li X; Shi W; Tang W; Bao C; Wang Z; Zhang Y; Zhang B; Wei X; Yi F
    Kidney Int; 2013 Aug; 84(2):265-76. PubMed ID: 23594678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway.
    Zhang Y; Li H; Hao J; Zhou Y; Liu W
    Exp Cell Res; 2014 Aug; 326(2):219-29. PubMed ID: 24768698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss of PTEN promotes podocyte cytoskeletal rearrangement, aggravating diabetic nephropathy.
    Lin J; Shi Y; Peng H; Shen X; Thomas S; Wang Y; Truong LD; Dryer SE; Hu Z; Xu J
    J Pathol; 2015 May; 236(1):30-40. PubMed ID: 25641678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sestrin2 remedies podocyte injury via orchestrating TSP-1/TGF-β1/Smad3 axis in diabetic kidney disease.
    Song S; Shi C; Bian Y; Yang Z; Mu L; Wu H; Duan H; Shi Y
    Cell Death Dis; 2022 Jul; 13(7):663. PubMed ID: 35908070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vaccination against type 1 angiotensin receptor prevents streptozotocin-induced diabetic nephropathy.
    Ding D; Du Y; Qiu Z; Yan S; Chen F; Wang M; Yang S; Zhou Y; Hu X; Deng Y; Wang S; Wang L; Zhang H; Wu H; Yu X; Zhou Z; Liao Y; Chen X
    J Mol Med (Berl); 2016 Feb; 94(2):207-18. PubMed ID: 26407577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depletion of Gprc5a Promotes Development of Diabetic Nephropathy.
    Ma X; Schwarz A; Sevilla SZ; Levin A; Hultenby K; Wernerson A; Lal M; Patrakka J
    J Am Soc Nephrol; 2018 Jun; 29(6):1679-1689. PubMed ID: 29636387
    [No Abstract]   [Full Text] [Related]  

  • 34. Semaphorin3a promotes advanced diabetic nephropathy.
    Aggarwal PK; Veron D; Thomas DB; Siegel D; Moeckel G; Kashgarian M; Tufro A
    Diabetes; 2015 May; 64(5):1743-59. PubMed ID: 25475434
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities.
    Guo C; Liu Y; Zhao W; Wei S; Zhang X; Wang W; Zeng X
    J Cell Mol Med; 2015 Sep; 19(9):2273-85. PubMed ID: 26103809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diabetes-Induced DUSP4 Reduction Promotes Podocyte Dysfunction and Progression of Diabetic Nephropathy.
    Denhez B; Rousseau M; Dancosst DA; Lizotte F; Guay A; Auger-Messier M; Côté AM; Geraldes P
    Diabetes; 2019 May; 68(5):1026-1039. PubMed ID: 30862678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research Progress on the Pathological Mechanisms of Podocytes in Diabetic Nephropathy.
    Zhang L; Wen Z; Han L; Zheng Y; Wei Y; Wang X; Wang Q; Fang X; Zhao L; Tong X
    J Diabetes Res; 2020; 2020():7504798. PubMed ID: 32695831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes.
    Wan J; Li P; Liu DW; Chen Y; Mo HZ; Liu BG; Chen WJ; Lu XQ; Guo J; Zhang Q; Qiao YJ; Liu ZS; Wan GR
    Mol Med Rep; 2016 Aug; 14(2):1771-84. PubMed ID: 27357417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IL-17 and CD40 ligand synergistically stimulate the chronicity of diabetic nephropathy.
    Kuo HL; Huang CC; Lin TY; Lin CY
    Nephrol Dial Transplant; 2018 Feb; 33(2):248-256. PubMed ID: 28339909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-κB/iNOS signaling in diabetic rat.
    Khan S; Jena G; Tikoo K; Kumar V
    Biochimie; 2015 Mar; 110():1-16. PubMed ID: 25572918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.