These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31150665)

  • 1. Modelling thermodynamic feedback on the metabolism of hydrogenotrophic methanogens.
    Lynch TA; Wang Y; van Brunt B; Pacheco D; Janssen PH
    J Theor Biol; 2019 Sep; 477():14-23. PubMed ID: 31150665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic microbial metabolism can proceed close to thermodynamic limits.
    Jackson BE; McInerney MJ
    Nature; 2002 Jan; 415(6870):454-6. PubMed ID: 11807560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Life close to the thermodynamic limit: how methanogenic archaea conserve energy.
    Deppenmeier U; Müller V
    Results Probl Cell Differ; 2008; 45():123-52. PubMed ID: 17713742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.
    Junicke H; van Loosdrecht MC; Kleerebezem R
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):915-25. PubMed ID: 26403924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of syntrophic cultures: a theoretical treatise on butyrate fermentation.
    Kleerebezem R; Stams AJ
    Biotechnol Bioeng; 2000 Mar; 67(5):529-43. PubMed ID: 10649228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial diversity arising from thermodynamic constraints.
    Großkopf T; Soyer OS
    ISME J; 2016 Nov; 10(11):2725-2733. PubMed ID: 27035705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.
    Zeng AP; Deckwer WD
    Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A thermodynamic assessment of possible substrates for sulphate-reducing bacteria.
    Wake LV; Christopher RK; Rickard PA; Andersen JE; Ralph BJ
    Aust J Biol Sci; 1977 Apr; 30(1-2):155-72. PubMed ID: 901304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenotrophic methanogens of the mammalian gut: Functionally similar, thermodynamically different-A modelling approach.
    Muñoz-Tamayo R; Popova M; Tillier M; Morgavi DP; Morel JP; Fonty G; Morel-Desrosiers N
    PLoS One; 2019; 14(12):e0226243. PubMed ID: 31826000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic Inhibition in Chemostat Models : With an Application to Bioreduction of Uranium.
    Gaebler HJ; Eberl HJ
    Bull Math Biol; 2020 Jun; 82(6):76. PubMed ID: 32535693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a self-contained concept of the molecular mechanism of energy interconversion by H(+)-transporting ATP synthase.
    Repke KR; Schön R
    Biol Rev Camb Philos Soc; 1994 May; 69(2):119-45. PubMed ID: 8054442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose.
    Yu HQ; Mu Y; Fang HH
    Biotechnol Bioeng; 2004 Sep; 87(7):813-22. PubMed ID: 15334408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic constraints on the assembly and diversity of microbial ecosystems are different near to and far from equilibrium.
    Cook J; Pawar S; Endres RG
    PLoS Comput Biol; 2021 Dec; 17(12):e1009643. PubMed ID: 34860834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase.
    Pérez JA; Ferguson SJ
    Biochemistry; 1990 Nov; 29(46):10503-18. PubMed ID: 2148690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical approaches to the evolutionary optimization of glycolysis: thermodynamic and kinetic constraints.
    Heinrich R; Montero F; Klipp E; Waddell TG; Meléndez-Hevia E
    Eur J Biochem; 1997 Jan; 243(1-2):191-201. PubMed ID: 9030739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for the kinetics of Methanobacterium bryantii M.o.H. considering hydrogen thresholds.
    Karadagli F; Rittmann BE
    Biodegradation; 2007 Aug; 18(4):453-64. PubMed ID: 17096208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of soluble microbial product formation in substrate-sufficient batch culture of activated sludge.
    Liu Y; Rols JL
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):605-8. PubMed ID: 12172633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics.
    Sprenger WW; Hackstein JH; Keltjens JT
    FEMS Microbiol Ecol; 2007 May; 60(2):266-75. PubMed ID: 17367516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.