These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31150674)
41. Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration. Celik E; Liu L; Choi H Water Res; 2011 Oct; 45(16):5287-94. PubMed ID: 21862096 [TBL] [Abstract][Full Text] [Related]
42. Novel sonochemical synthesis of Fe Sriram B; Govindasamy M; Wang SF; Jothi Ramalingam R; Al-Lohedan H; Maiyalagan T Ultrason Sonochem; 2019 Nov; 58():104618. PubMed ID: 31450380 [TBL] [Abstract][Full Text] [Related]
43. Post-treatment of soft drink industrial wastewater using a new antibacterial ultra-filtration membrane prepared of Polyethersulfone blended with boehmite-tannic acid-graphene quantum dot. Moradi S; Zinatizadeh AA; Zinadini S Water Environ Res; 2024 Feb; 96(2):e10997. PubMed ID: 38385894 [TBL] [Abstract][Full Text] [Related]
44. Surface tuned polyethersulfone membrane using an iron oxide functionalized halloysite nanocomposite for enhanced humic acid removal. Ouda M; Hai A; Krishnamoorthy R; Govindan B; Othman I; Kui CC; Choi MY; Hasan SW; Banat F Environ Res; 2022 Mar; 204(Pt B):112113. PubMed ID: 34563528 [TBL] [Abstract][Full Text] [Related]
45. Enhanced oil removal from a real polymer production plant by cellulose nanocrystals-serine incorporated polyethersulfone ultrafiltration membrane. Asadi A; Gholami F; Zinatizadeh AA Environ Sci Pollut Res Int; 2022 May; 29(25):37144-37158. PubMed ID: 35031989 [TBL] [Abstract][Full Text] [Related]
46. Use of cellulose acetate/polyphenylsulfone derivatives to fabricate ultrafiltration hollow fiber membranes for the removal of arsenic from drinking water. Kumar M; RaoT S; Isloor AM; Ibrahim GPS; Inamuddin ; Ismail N; Ismail AF; Asiri AM Int J Biol Macromol; 2019 May; 129():715-727. PubMed ID: 30738161 [TBL] [Abstract][Full Text] [Related]
47. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Teymourian H; Salimi A; Khezrian S Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810 [TBL] [Abstract][Full Text] [Related]
48. Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)-b-poly(methyl methacrylate)-b-poly(vinyl pyrrolidone). Ran F; Nie S; Zhao W; Li J; Su B; Sun S; Zhao C Acta Biomater; 2011 Sep; 7(9):3370-81. PubMed ID: 21658478 [TBL] [Abstract][Full Text] [Related]
49. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma. Damar Huner I; Gulec HA Colloids Surf B Biointerfaces; 2017 Dec; 160():510-519. PubMed ID: 29017146 [TBL] [Abstract][Full Text] [Related]
50. Antibacterial properties of PES/CuCl(2) three-bore hollow fiber UF membrane. Dang J; Zhang Y; Du Z; Zhang H; Liu J Water Sci Technol; 2012; 66(4):799-803. PubMed ID: 22766869 [TBL] [Abstract][Full Text] [Related]
51. Probing protein rejection behavior of blended PES-based flat-sheet ultrafiltration membranes: A density functional theory (DFT) study. Abdel-Karim A; Elhaes H; El-Kalliny AS; Badawy MI; Ibrahim M; Gad-Allah TA Spectrochim Acta A Mol Biomol Spectrosc; 2020 Sep; 238():118399. PubMed ID: 32388231 [TBL] [Abstract][Full Text] [Related]
52. Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. Xue J; Zhao W; Nie S; Sun S; Zhao C Carbohydr Polym; 2013 Jun; 95(1):64-71. PubMed ID: 23618240 [TBL] [Abstract][Full Text] [Related]
53. Research on polyvinylidene fluoride (PVDF) hollow-fiber hemodialyzer. Zhang Q; Lu X; Zhao L; Liu J; Wu C Biomed Tech (Berl); 2016 Jun; 61(3):309-16. PubMed ID: 25781663 [TBL] [Abstract][Full Text] [Related]
54. Enabling graphene oxide nanosheets as water separation membranes. Hu M; Mi B Environ Sci Technol; 2013 Apr; 47(8):3715-23. PubMed ID: 23488812 [TBL] [Abstract][Full Text] [Related]
55. Highly efficient removal of pathogenic bacteria with magnetic graphene composite. Zhan S; Zhu D; Ma S; Yu W; Jia Y; Li Y; Yu H; Shen Z ACS Appl Mater Interfaces; 2015 Feb; 7(7):4290-8. PubMed ID: 25634911 [TBL] [Abstract][Full Text] [Related]
56. Surface coating of UF membranes to improve antifouling properties: A comparison study between cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs). Bai L; Liu Y; Ding A; Ren N; Li G; Liang H Chemosphere; 2019 Feb; 217():76-84. PubMed ID: 30414545 [TBL] [Abstract][Full Text] [Related]
57. Preparation of hollow core/shell Fe Wang J; Fang J; Fang P; Li X; Wu S; Zhang W; Li S J Biomater Sci Polym Ed; 2017 Mar; 28(4):337-349. PubMed ID: 27931160 [TBL] [Abstract][Full Text] [Related]
58. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Celik E; Park H; Choi H; Choi H Water Res; 2011 Jan; 45(1):274-82. PubMed ID: 20716459 [TBL] [Abstract][Full Text] [Related]
59. Influence of UV-irradiation intensity and exposure duration on the hemobiocompatibility enhancement of a novel synthesized phosphobetaine zwitterions polyethersulfone clinical hemodialysis membranes. Eduok U; Camara H; Abdelrasoul A; Shoker A J Biomed Mater Res B Appl Biomater; 2022 Mar; 110(3):573-586. PubMed ID: 34510718 [TBL] [Abstract][Full Text] [Related]
60. Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem. Kiran SA; Arthanareeswaran G; Thuyavan YL; Ismail AF Ecotoxicol Environ Saf; 2015 Nov; 121():186-92. PubMed ID: 25869419 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]