BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31150735)

  • 1. Engineering Strategy and Vector Library for the Rapid Generation of Modular Light-Controlled Protein-Protein Interactions.
    Tichy AM; Gerrard EJ; Legrand JMD; Hobbs RM; Janovjak H
    J Mol Biol; 2019 Aug; 431(17):3046-3055. PubMed ID: 31150735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion.
    Mathony J; Niopek D
    Adv Biol (Weinh); 2021 May; 5(5):e2000181. PubMed ID: 33107225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guidelines for Photoreceptor Engineering.
    Ziegler T; Schumacher CH; Möglich A
    Methods Mol Biol; 2016; 1408():389-403. PubMed ID: 26965138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein.
    Garcia-Marcos M; Parag-Sharma K; Marivin A; Maziarz M; Luebbers A; Nguyen LT
    Elife; 2020 Sep; 9():. PubMed ID: 32936073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repurposing Protein Degradation for Optogenetic Modulation of Protein Activities.
    Mondal P; Krishnamurthy VV; Sharum SR; Haack N; Zhou H; Cheng J; Yang J; Zhang K
    ACS Synth Biol; 2019 Nov; 8(11):2585-2592. PubMed ID: 31600062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS).
    Wehler P; Niopek D; Eils R; Di Ventura B
    Curr Protoc Chem Biol; 2016 Jun; 8(2):131-145. PubMed ID: 27258691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.
    Lu X; Shen Y; Campbell RE
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity.
    Shaaya M; Fauser J; Zhurikhina A; Conage-Pough JE; Huyot V; Brennan M; Flower CT; Matsche J; Khan S; Natarajan V; Rehman J; Kota P; White FM; Tsygankov D; Karginov AV
    Elife; 2020 Sep; 9():. PubMed ID: 32965214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the optical control of protein function through genetic code expansion.
    Courtney T; Deiters A
    Curr Opin Chem Biol; 2018 Oct; 46():99-107. PubMed ID: 30056281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared Light-Controlled Gene Expression and Protein Targeting in Neurons and Non-neuronal Cells.
    Redchuk TA; Karasev MM; Omelina ES; Verkhusha VV
    Chembiochem; 2018 Jun; 19(12):1334-1340. PubMed ID: 29465801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of bidirectional, cyanobacteriochrome-based light-inducible dimers (BICYCL)s.
    Jang J; Tang K; Youn J; McDonald S; Beyer HM; Zurbriggen MD; Uppalapati M; Woolley GA
    Nat Methods; 2023 Mar; 20(3):432-441. PubMed ID: 36823330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetics: A Primer for Chemists.
    O'Banion CP; Lawrence DS
    Chembiochem; 2018 Jun; 19(12):1201-1216. PubMed ID: 29671930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast.
    Salinas F; Rojas V; Delgado V; López J; Agosin E; Larrondo LF
    mBio; 2018 Jul; 9(4):. PubMed ID: 30065085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Switchable Ion Channels and Receptors for Optogenetic Interrogation of Neuronal Signaling.
    Lin WC; Kramer RH
    Bioconjug Chem; 2018 Apr; 29(4):861-869. PubMed ID: 29465988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Resources for Optogenetic Tools.
    Mathes T
    Methods Mol Biol; 2016; 1408():19-36. PubMed ID: 26965113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic control with a photocleavable protein, PhoCl.
    Zhang W; Lohman AW; Zhuravlova Y; Lu X; Wiens MD; Hoi H; Yaganoglu S; Mohr MA; Kitova EN; Klassen JS; Pantazis P; Thompson RJ; Campbell RE
    Nat Methods; 2017 Apr; 14(4):391-394. PubMed ID: 28288123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compendium of chemical and genetic approaches to light-regulated gene transcription.
    Hughes RM
    Crit Rev Biochem Mol Biol; 2018 Oct; 53(5):453-474. PubMed ID: 30040498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthogonal optogenetic triple-gene control in Mammalian cells.
    Müller K; Engesser R; Timmer J; Zurbriggen MD; Weber W
    ACS Synth Biol; 2014 Nov; 3(11):796-801. PubMed ID: 25343333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.