BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31150971)

  • 1. One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing.
    Hao N; Alper K; Tekin K; Karagoz S; Ragauskas AJ
    Bioresour Technol; 2019 Sep; 288():121500. PubMed ID: 31150971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system.
    Yang J; Hong C; Li Z; Xing Y; Zhao X
    Waste Manag; 2021 Feb; 120():164-174. PubMed ID: 33307361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery.
    Chen J
    Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoliquefaction of palm oil fiber (Elaeis sp.) using supercritical ethanol.
    Oliveira AL; Almeida PS; Campos MC; Franceschi E; Dariva C; Borges GR
    Bioresour Technol; 2017 Apr; 230():1-7. PubMed ID: 28119153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-supercritical liquefaction of rice stalk for the production of bio-oil: Effect of solvents.
    Li R; Li B; Yang T; Kai X; Wang W; Jie Y; Zhang Y; Chen G
    Bioresour Technol; 2015 Dec; 198():94-100. PubMed ID: 26378960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil.
    Chen WT; Zhang Y; Zhang J; Yu G; Schideman LC; Zhang P; Minarick M
    Bioresour Technol; 2014; 152():130-9. PubMed ID: 24287452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.
    Aysu T; Durak H; Güner S; Bengü AŞ; Esim N
    Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.
    Shakya R; Adhikari S; Mahadevan R; Hassan EB; Dempster TA
    Bioresour Technol; 2018 Mar; 252():28-36. PubMed ID: 29306126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction methodology of lignin from biomass waste influences the quality of bio-oil obtained by solvothermal depolymerization process.
    Gnana Prakash D; Gopinath KP; Prasanth SM; Harish S; Rishikesh M; Sivaramakrishnan R; Pugazhendhi A
    Chemosphere; 2022 Apr; 293():133473. PubMed ID: 34974039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the bio-oil characterization and heavy metals distribution during the aqueous phase recycling in the hydrothermal liquefaction of As-enriched Pteris vittata L.
    Jiang H; Fan L; Cai C; Hu Y; Zhao F; Ruan R; Yang W
    Bioresour Technol; 2020 Dec; 317():124031. PubMed ID: 32871332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.
    Chang S; Zhao Z; Zheng A; Li X; Wang X; Huang Z; He F; Li H
    Bioresour Technol; 2013 Jun; 138():321-8. PubMed ID: 23624050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils.
    Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y
    Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upgrading of crude algal bio-oil in supercritical water.
    Duan P; Savage PE
    Bioresour Technol; 2011 Jan; 102(2):1899-906. PubMed ID: 20801646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor.
    Cheng F; Jarvis JM; Yu J; Jena U; Nirmalakhandan N; Schaub TM; Brewer CE
    Bioresour Technol; 2019 Dec; 294():122184. PubMed ID: 31683452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behaviors of rice straw two-step liquefaction with sub/supercritical ethanol in carbon dioxide atmosphere.
    Yang T; Wang J; Li B; Kai X; Xing W; Li R
    Bioresour Technol; 2018 Jun; 258():287-294. PubMed ID: 29547851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of chemical modifications of micro- and macromolecules in bio-oil during hydrodeoxygenation with Pd/C catalyst in supercritical ethanol.
    Oh S; Hwang H; Choi HS; Choi JW
    Chemosphere; 2014 Dec; 117():806-14. PubMed ID: 24582356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental studies of hydrothermal liquefaction of kitchen waste with H
    Wang L; Chi Y; Shu D; Weiss-Hortala E; Nzihou A; Choi S
    Waste Manag Res; 2021 Jan; 39(1):165-173. PubMed ID: 32951533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol.
    Kim JY; Oh S; Hwang H; Cho TS; Choi IG; Choi JW
    Chemosphere; 2013 Nov; 93(9):1755-64. PubMed ID: 23820536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.
    Duan P; Wang B; Xu Y
    Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.