These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31150971)
1. One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. Hao N; Alper K; Tekin K; Karagoz S; Ragauskas AJ Bioresour Technol; 2019 Sep; 288():121500. PubMed ID: 31150971 [TBL] [Abstract][Full Text] [Related]
2. Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system. Yang J; Hong C; Li Z; Xing Y; Zhao X Waste Manag; 2021 Feb; 120():164-174. PubMed ID: 33307361 [TBL] [Abstract][Full Text] [Related]
3. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery. Chen J Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362 [TBL] [Abstract][Full Text] [Related]
5. Sub-supercritical liquefaction of rice stalk for the production of bio-oil: Effect of solvents. Li R; Li B; Yang T; Kai X; Wang W; Jie Y; Zhang Y; Chen G Bioresour Technol; 2015 Dec; 198():94-100. PubMed ID: 26378960 [TBL] [Abstract][Full Text] [Related]
6. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Chen WT; Zhang Y; Zhang J; Yu G; Schideman LC; Zhang P; Minarick M Bioresour Technol; 2014; 152():130-9. PubMed ID: 24287452 [TBL] [Abstract][Full Text] [Related]
7. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization. Aysu T; Durak H; Güner S; Bengü AŞ; Esim N Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388 [TBL] [Abstract][Full Text] [Related]
8. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp. Shakya R; Adhikari S; Mahadevan R; Hassan EB; Dempster TA Bioresour Technol; 2018 Mar; 252():28-36. PubMed ID: 29306126 [TBL] [Abstract][Full Text] [Related]
9. Extraction methodology of lignin from biomass waste influences the quality of bio-oil obtained by solvothermal depolymerization process. Gnana Prakash D; Gopinath KP; Prasanth SM; Harish S; Rishikesh M; Sivaramakrishnan R; Pugazhendhi A Chemosphere; 2022 Apr; 293():133473. PubMed ID: 34974039 [TBL] [Abstract][Full Text] [Related]
10. Study on the bio-oil characterization and heavy metals distribution during the aqueous phase recycling in the hydrothermal liquefaction of As-enriched Pteris vittata L. Jiang H; Fan L; Cai C; Hu Y; Zhao F; Ruan R; Yang W Bioresour Technol; 2020 Dec; 317():124031. PubMed ID: 32871332 [TBL] [Abstract][Full Text] [Related]
11. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
12. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor. Chang S; Zhao Z; Zheng A; Li X; Wang X; Huang Z; He F; Li H Bioresour Technol; 2013 Jun; 138():321-8. PubMed ID: 23624050 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857 [TBL] [Abstract][Full Text] [Related]
14. Upgrading of crude algal bio-oil in supercritical water. Duan P; Savage PE Bioresour Technol; 2011 Jan; 102(2):1899-906. PubMed ID: 20801646 [TBL] [Abstract][Full Text] [Related]
15. Bio-crude oil from hydrothermal liquefaction of wastewater microalgae in a pilot-scale continuous flow reactor. Cheng F; Jarvis JM; Yu J; Jena U; Nirmalakhandan N; Schaub TM; Brewer CE Bioresour Technol; 2019 Dec; 294():122184. PubMed ID: 31683452 [TBL] [Abstract][Full Text] [Related]
16. Behaviors of rice straw two-step liquefaction with sub/supercritical ethanol in carbon dioxide atmosphere. Yang T; Wang J; Li B; Kai X; Xing W; Li R Bioresour Technol; 2018 Jun; 258():287-294. PubMed ID: 29547851 [TBL] [Abstract][Full Text] [Related]
17. Investigation of chemical modifications of micro- and macromolecules in bio-oil during hydrodeoxygenation with Pd/C catalyst in supercritical ethanol. Oh S; Hwang H; Choi HS; Choi JW Chemosphere; 2014 Dec; 117():806-14. PubMed ID: 24582356 [TBL] [Abstract][Full Text] [Related]
18. Experimental studies of hydrothermal liquefaction of kitchen waste with H Wang L; Chi Y; Shu D; Weiss-Hortala E; Nzihou A; Choi S Waste Manag Res; 2021 Jan; 39(1):165-173. PubMed ID: 32951533 [TBL] [Abstract][Full Text] [Related]
19. Effects of various reaction parameters on solvolytical depolymerization of lignin in sub- and supercritical ethanol. Kim JY; Oh S; Hwang H; Cho TS; Choi IG; Choi JW Chemosphere; 2013 Nov; 93(9):1755-64. PubMed ID: 23820536 [TBL] [Abstract][Full Text] [Related]
20. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae. Duan P; Wang B; Xu Y Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]