These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31151023)

  • 1. Dynamics of foam flow in a rock fracture: Effects of aperture variation on apparent shear viscosity and bubble morphology.
    Shojaei MJ; Rodríguez de Castro A; Méheust Y; Shokri N
    J Colloid Interface Sci; 2019 Sep; 552():464-475. PubMed ID: 31151023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell.
    Osei-Bonsu K; Shokri N; Grassia P
    J Colloid Interface Sci; 2016 Jan; 462():288-96. PubMed ID: 26473278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A micro-scale rheometer to study foam texture and flow resistance in planar fractures.
    Nazari N; Kovscek AR
    Lab Chip; 2022 Sep; 22(18):3489-3498. PubMed ID: 35959658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of groundwater velocity in discrete rock fractures.
    Novakowski K; Bickerton G; Lapcevic P; Voralek J; Ross N
    J Contam Hydrol; 2006 Jan; 82(1-2):44-60. PubMed ID: 16239047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid Fraction Effect on Foam Flow through a Local Obstacle.
    Stennikova O; Shmakova N; Carrat JB; Ermanyuk E
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foam coarsening under a steady shear: interplay between bubble rearrangement and film thinning dynamics.
    Saint-Jalmes A; Trégouët C
    Soft Matter; 2023 Mar; 19(11):2090-2098. PubMed ID: 36853265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakup of bubbles and drops in steadily sheared foams and concentrated emulsions.
    Golemanov K; Tcholakova S; Denkov ND; Ananthapadmanabhan KP; Lips A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051405. PubMed ID: 19113128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.
    Liu X; Wang Y; Waite TD; Leslie G
    Water Res; 2015 May; 75():131-45. PubMed ID: 25768986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-differentiated lateral migration of bubbles in Couette flow of two-dimensional foam.
    Mohammadigoushki H; Feng JJ
    Phys Rev Lett; 2012 Aug; 109(8):084502. PubMed ID: 23002748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.
    Katgert G; Latka A; Möbius ME; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066318. PubMed ID: 19658605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structuring bubbles and foams in gelatine solutions within a circular microchannel device.
    Skurtys O; Aguilera JM
    J Colloid Interface Sci; 2008 Feb; 318(2):380-8. PubMed ID: 17991482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence of flow destabilization in a two-dimensional bidisperse foam.
    Cantat I; Poloni C; Delannay R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011505. PubMed ID: 16486152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Qualification of New Methods for Measuring In Situ Rheology of Non-Newtonian Fluids in Porous Media.
    Jacobsen JG; Shaker Shiran B; Skauge T; Sorbie KS; Skauge A
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32075148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of milk foams produced by steam injection.
    Jimenez-Junca CA; Gumy JC; Sher A; Niranjan K
    J Food Sci; 2011; 76(9):E569-75. PubMed ID: 22416702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foam drainage. Possible influence of a non-newtonian surface shear viscosity.
    Gauchet S; Durand M; Langevin D
    J Colloid Interface Sci; 2015 Jul; 449():373-6. PubMed ID: 25595624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of fracture aperture field heterogeneity by electrical resistance measurement.
    Boschan A; Ippolito I; Chertcoff R; Hulin JP; Auradou H
    J Contam Hydrol; 2011 Apr; 123(1-2):65-74. PubMed ID: 21310504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of velocity on N
    Vavra E; Bai C; Puerto M; Ma K; Mateen K; Hirasaki GJ; Biswal SL
    Sci Rep; 2023 Jun; 13(1):10029. PubMed ID: 37340000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shooting in a foam.
    Le Goff A; Quéré D; Clanet C
    Soft Matter; 2014 Sep; 10(35):6696-704. PubMed ID: 25066080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Investigation of Foam Coarsening Dynamics in Porous Media at High-Pressure and High-Temperature Conditions.
    Yu W; Zhou X; Kanj MY
    Langmuir; 2022 Mar; 38(9):2895-2905. PubMed ID: 35192368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foam fractionation of globular proteins.
    Brown L; Narsimhan G; Wankat PC
    Biotechnol Bioeng; 1990 Nov; 36(9):947-59. PubMed ID: 18597295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.