These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31151025)

  • 21. AVP-IC50 Pred: Multiple machine learning techniques-based prediction of peptide antiviral activity in terms of half maximal inhibitory concentration (IC50).
    Qureshi A; Tandon H; Kumar M
    Biopolymers; 2015 Nov; 104(6):753-63. PubMed ID: 26213387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico approaches for designing highly effective cell penetrating peptides.
    Gautam A; Chaudhary K; Kumar R; Sharma A; Kapoor P; Tyagi A; ; Raghava GP
    J Transl Med; 2013 Mar; 11():74. PubMed ID: 23517638
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation.
    Charoenkwan P; Nantasenamat C; Hasan MM; Shoombuatong W
    Anal Biochem; 2020 Jun; 599():113747. PubMed ID: 32333902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer-aided prediction of antigen presenting cell modulators for designing peptide-based vaccine adjuvants.
    Nagpal G; Chaudhary K; Agrawal P; Raghava GPS
    J Transl Med; 2018 Jul; 16(1):181. PubMed ID: 29970096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico approach for predicting toxicity of peptides and proteins.
    Gupta S; Kapoor P; Chaudhary K; Gautam A; Kumar R; ; Raghava GP
    PLoS One; 2013; 8(9):e73957. PubMed ID: 24058508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AntiCP 2.0: an updated model for predicting anticancer peptides.
    Agrawal P; Bhagat D; Mahalwal M; Sharma N; Raghava GPS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32770192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TumorHoPe: a database of tumor homing peptides.
    Kapoor P; Singh H; Gautam A; Chaudhary K; Kumar R; Raghava GP
    PLoS One; 2012; 7(4):e35187. PubMed ID: 22523575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.
    Stanislawski J; Kotulska M; Unold O
    BMC Bioinformatics; 2013 Jan; 14():21. PubMed ID: 23327628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RaptorX-Property: a web server for protein structure property prediction.
    Wang S; Li W; Liu S; Xu J
    Nucleic Acids Res; 2016 Jul; 44(W1):W430-5. PubMed ID: 27112573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides.
    Chaudhary K; Kumar R; Singh S; Tuknait A; Gautam A; Mathur D; Anand P; Varshney GC; Raghava GP
    Sci Rep; 2016 Mar; 6():22843. PubMed ID: 26953092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of tumor homing peptides by utilizing hybrid feature representation.
    Zou H; Yang F; Yin Z
    J Biomol Struct Dyn; 2023 May; 41(8):3405-3412. PubMed ID: 35262448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Molecules; 2019 May; 24(10):. PubMed ID: 31121946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SABinder: A Web Service for Predicting Streptavidin-Binding Peptides.
    He B; Kang J; Ru B; Ding H; Zhou P; Huang J
    Biomed Res Int; 2016; 2016():9175143. PubMed ID: 27610387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Evaluation on Different Machine Learning Algorithms for Classification and Prediction of Antifungal Peptides.
    Mousavizadegan M; Mohabatkar H
    Med Chem; 2016; 12(8):795-800. PubMed ID: 26924627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides.
    Charoenkwan P; Chiangjong W; Nantasenamat C; Hasan MM; Manavalan B; Shoombuatong W
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33963832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iDPF-PseRAAAC: A Web-Server for Identifying the Defensin Peptide Family and Subfamily Using Pseudo Reduced Amino Acid Alphabet Composition.
    Zuo Y; Lv Y; Wei Z; Yang L; Li G; Fan G
    PLoS One; 2015; 10(12):e0145541. PubMed ID: 26713618
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NEPTUNE: A novel computational approach for accurate and large-scale identification of tumor homing peptides.
    Charoenkwan P; Schaduangrat N; Lio' P; Moni MA; Manavalan B; Shoombuatong W
    Comput Biol Med; 2022 Sep; 148():105700. PubMed ID: 35715261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.