These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 31151036)
1. Rhamnolipids functionalized with basic amino acids: Synthesis, aggregation behavior, antibacterial activity and biodegradation studies. Ramos da Silva A; Manresa MÁ; Pinazo A; García MT; Pérez L Colloids Surf B Biointerfaces; 2019 Sep; 181():234-243. PubMed ID: 31151036 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Samadi N; Abadian N; Ahmadkhaniha R; Amini F; Dalili D; Rastkari N; Safaripour E; Mohseni FA Folia Microbiol (Praha); 2012 Nov; 57(6):501-8. PubMed ID: 22644668 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Haba E; Pinazo A; Jauregui O; Espuny MJ; Infante MR; Manresa A Biotechnol Bioeng; 2003 Feb; 81(3):316-22. PubMed ID: 12474254 [TBL] [Abstract][Full Text] [Related]
4. Antifungal and antiprotozoal green amino acid-based rhamnolipids: Mode of action, antibiofilm efficiency and selective activity against resistant Candida spp. strains and Acanthamoeba castellanii. da Silva A; Nobre H; Sampaio L; Nascimento BD; da Silva C; de Andrade Neto JB; Manresa Á; Pinazo A; Cavalcanti B; de Moraes MO; Ruiz-Trillo I; Antó M; Morán C; Pérez L Colloids Surf B Biointerfaces; 2020 Sep; 193():111148. PubMed ID: 32512371 [TBL] [Abstract][Full Text] [Related]
5. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Haba E; Bouhdid S; Torrego-Solana N; Marqués AM; Espuny MJ; García-Celma MJ; Manresa A Int J Pharm; 2014 Dec; 476(1-2):134-41. PubMed ID: 25269010 [TBL] [Abstract][Full Text] [Related]
6. Valorization of biodiesel side stream waste glycerol for rhamnolipids production by Pseudomonas aeruginosa RS6. Baskaran SM; Zakaria MR; Mukhlis Ahmad Sabri AS; Mohamed MS; Wasoh H; Toshinari M; Hassan MA; Banat IM Environ Pollut; 2021 May; 276():116742. PubMed ID: 33621735 [TBL] [Abstract][Full Text] [Related]
7. Antibacterial activity of short hydrophobic and basic-rich peptides. Chen PW; Shyu CL; Mao FC Am J Vet Res; 2003 Sep; 64(9):1088-92. PubMed ID: 13677384 [TBL] [Abstract][Full Text] [Related]
8. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Leite GG; Figueirôa JV; Almeida TC; Valões JL; Marques WF; Duarte MD; Gorlach-Lira K Biotechnol Prog; 2016 Mar; 32(2):262-70. PubMed ID: 26588432 [TBL] [Abstract][Full Text] [Related]
9. Production of novel rhamnolipids via biodegradation of waste cooking oil using Pseudomonas aeruginosa MTCC7815. Sharma S; Datta P; Kumar B; Tiwari P; Pandey LM Biodegradation; 2019 Aug; 30(4):301-312. PubMed ID: 30937572 [TBL] [Abstract][Full Text] [Related]
10. [Construction of mono/di-rhamnolipid ratios-manipulable strains and characterization of their corresponding surfactants' activity]. Zhao M; Zheng Y; Yu H; Ma L Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):786-798. PubMed ID: 38545977 [TBL] [Abstract][Full Text] [Related]
11. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Wadekar SD; Kale SB; Lali AM; Bhowmick DN; Pratap AP Prep Biochem Biotechnol; 2012; 42(3):249-66. PubMed ID: 22509850 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. Zhang GL; Wu YT; Qian XP; Meng Q J Zhejiang Univ Sci B; 2005 Aug; 6(8):725-30. PubMed ID: 16052704 [TBL] [Abstract][Full Text] [Related]
14. Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Bharali P; Saikia JP; Ray A; Konwar BK Colloids Surf B Biointerfaces; 2013 Mar; 103():502-9. PubMed ID: 23261573 [TBL] [Abstract][Full Text] [Related]
15. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
16. Recycling of cooking oil fume condensate for the production of rhamnolipids by Pseudomonas aeruginosa WB505. Wu J; Zhang J; Zhang H; Gao M; Liu L; Zhan X Bioprocess Biosyst Eng; 2019 May; 42(5):777-784. PubMed ID: 30741355 [TBL] [Abstract][Full Text] [Related]
17. Using Diphenylphosphoryl Azide (DPPA) for the Facile Synthesis of Biodegradable Antiseptic Random Copolypeptides. Pu Y; Du Y; Khin MM; Ravikumar V; Rice SA; Duan H; Chan-Park MB Macromol Rapid Commun; 2017 Apr; 38(7):. PubMed ID: 28169482 [TBL] [Abstract][Full Text] [Related]
19. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. de Freitas Ferreira J; Vieira EA; Nitschke M Food Res Int; 2019 Feb; 116():737-744. PubMed ID: 30717003 [TBL] [Abstract][Full Text] [Related]
20. Effect of rhamnolipids on initial attachment of bacteria on glass and octadecyltrichlorosilane-modified glass. Sodagari M; Wang H; Newby BM; Ju LK Colloids Surf B Biointerfaces; 2013 Mar; 103():121-8. PubMed ID: 23201728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]