BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31151118)

  • 1. A high-performance 4 nV (√Hz)
    Petkos K; Guiho T; Degenaar P; Jackson A; Brown P; Denison T; Drakakis EM
    J Neural Eng; 2019 Oct; 16(6):066003. PubMed ID: 31151118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of CMOS Analog Front-End Local-Field Potential Chopper Amplifier With Stimulation Artifact Tolerance for Real-Time Closed-Loop Deep Brain Stimulation SoC Applications.
    Wu CY; Huang CW; Chen YW; Lai CK; Hung CC; Ker MD
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):539-551. PubMed ID: 38198255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artefact-free recording of local field potentials with simultaneous stimulation for closed-loop Deep-Brain Stimulation.
    Debarros J; Gaignon L; He S; Pogosyan A; Benjaber M; Denison T; Brown P; Tan H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3367-3370. PubMed ID: 33018726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electronic device for artefact suppression in human local field potential recordings during deep brain stimulation.
    Rossi L; Foffani G; Marceglia S; Bracchi F; Barbieri S; Priori A
    J Neural Eng; 2007 Jun; 4(2):96-106. PubMed ID: 17409484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance 8 nV/√Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals.
    Petkos K; Koutsoftidis S; Guiho T; Degenaar P; Jackson A; Greenwald SE; Brown P; Denison T; Drakakis EM
    J Neuroeng Rehabil; 2019 Dec; 16(1):156. PubMed ID: 31823804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moving average template subtraction to remove stimulation artefacts in EEGs and LFPs recorded during deep brain stimulation.
    Sun L; Hinrichs H
    J Neurosci Methods; 2016 Jun; 266():126-36. PubMed ID: 27039973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact.
    Kent AR; Grill WM
    J Neural Eng; 2012 Jun; 9(3):036004. PubMed ID: 22510375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time removal of stimulation artifacts in closed-loop deep brain stimulation.
    Nie Y; Guo X; Li X; Geng X; Li Y; Quan Z; Zhu G; Yin Z; Zhang J; Wang S
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34818629
    [No Abstract]   [Full Text] [Related]  

  • 9. Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information.
    Abbasi O; Hirschmann J; Schmitz G; Schnitzler A; Butz M
    J Neurosci Methods; 2016 Aug; 268():131-41. PubMed ID: 27090949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal ganglia local field potentials: applications in the development of new deep brain stimulation devices for movement disorders.
    Marceglia S; Rossi L; Foffani G; Bianchi A; Cerutti S; Priori A
    Expert Rev Med Devices; 2007 Sep; 4(5):605-14. PubMed ID: 17850195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards adaptive deep brain stimulation: clinical and technical notes on a novel commercial device for chronic brain sensing.
    Thenaisie Y; Palmisano C; Canessa A; Keulen BJ; Capetian P; Jiménez MC; Bally JF; Manferlotti E; Beccaria L; Zutt R; Courtine G; Bloch J; van der Gaag NA; Hoffmann CF; Moraud EM; Isaias IU; Contarino MF
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34388744
    [No Abstract]   [Full Text] [Related]  

  • 12. High-resolution local field potentials measured with deep brain stimulation arrays.
    Zhang S; Connolly AT; Madden LR; Vitek JL; Johnson MD
    J Neural Eng; 2018 Aug; 15(4):046019. PubMed ID: 29651998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation.
    Oswal A; Jha A; Neal S; Reid A; Bradbury D; Aston P; Limousin P; Foltynie T; Zrinzo L; Brown P; Litvak V
    J Neurosci Methods; 2016 Mar; 261():29-46. PubMed ID: 26698227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation.
    Chang SY; Kimble CJ; Kim I; Paek SB; Kressin KR; Boesche JB; Whitlock SV; Eaker DR; Kasasbeh A; Horne AE; Blaha CD; Bennet KE; Lee KH
    J Neurosurg; 2013 Dec; 119(6):1556-65. PubMed ID: 24116724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Method for Removal of Deep Brain Stimulation Artifact From Local Field Potentials.
    Qian X; Chen Y; Feng Y; Ma B; Hao H; Li L
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2217-2226. PubMed ID: 28113981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial case series of a novel sensing deep brain stimulation device in drug-resistant epilepsy and consistent identification of alpha/beta oscillatory activity: A feasibility study.
    Chua MMJ; Vissani M; Liu DD; Schaper FLWVJ; Warren AEL; Caston R; Dworetzky BA; Bubrick EJ; Sarkis RA; Cosgrove GR; Rolston JD
    Epilepsia; 2023 Oct; 64(10):2586-2603. PubMed ID: 37483140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.
    Wang CF; Yang SH; Lin SH; Chen PC; Lo YC; Pan HC; Lai HY; Liao LD; Lin HC; Chen HY; Huang WC; Huang WJ; Chen YY
    Brain Stimul; 2017; 10(3):672-683. PubMed ID: 28298263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease.
    Swann NC; de Hemptinne C; Miocinovic S; Qasim S; Ostrem JL; Galifianakis NB; Luciano MS; Wang SS; Ziman N; Taylor R; Starr PA
    J Neurosurg; 2018 Feb; 128(2):605-616. PubMed ID: 28409730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of deep brain stimulation electrode characteristics for neural recording.
    Kent AR; Grill WM
    J Neural Eng; 2014 Aug; 11(4):046010. PubMed ID: 24921984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptively Clock-Boosted Auto-Ranging Neural-Interface for Emerging Neuromodulation Applications.
    Pazhouhandeh MR; Amirsoleimani A; Weisspapir I; Carlen P; Genov R
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1138-1152. PubMed ID: 36417723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.