BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31151367)

  • 41. A robust nanobiocatalyst based on high performance lipase immobilized to novel synthesised poly(o-toluidine) functionalized magnetic nanocomposite: Sterling stability and application.
    Asmat S; Husain Q
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():25-36. PubMed ID: 30889698
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced catalytic activity of lipase encapsulated in PCL nanofibers.
    Song J; Kahveci D; Chen M; Guo Z; Xie E; Xu X; Besenbacher F; Dong M
    Langmuir; 2012 Apr; 28(14):6157-62. PubMed ID: 22397625
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Homogeneous esterification by lipase from Burkholderia cepacia in the fluorinated solvent.
    Shipovskov S
    Biotechnol Prog; 2008; 24(6):1262-6. PubMed ID: 19194939
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sol-Gel Immobilisation of Lipases: Towards Active and Stable Biocatalysts for the Esterification of Valeric Acid.
    Cebrián-García S; Balu AM; García A; Luque R
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30200657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil.
    Noureddini H; Gao X; Philkana RS
    Bioresour Technol; 2005 May; 96(7):769-77. PubMed ID: 15607189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pseudomonas cepacia lipase--mediated transesterification reactions of hydrocinnamates.
    Priya K; Venugopal T; Chadha A
    Indian J Biochem Biophys; 2002 Aug; 39(4):259-63. PubMed ID: 22908416
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production.
    Fan Y; Su F; Li K; Ke C; Yan Y
    Sci Rep; 2017 Mar; 7():45643. PubMed ID: 28358395
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzymatic transesterification of waste vegetable oil to produce biodiesel.
    Lopresto CG; Naccarato S; Albo L; De Paola MG; Chakraborty S; Curcio S; Calabrò V
    Ecotoxicol Environ Saf; 2015 Nov; 121():229-35. PubMed ID: 25838070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transesterification activity of lipases immobilized in a phyllosilicate sol-gel matrix.
    Hsu AF; Jones KC; Foglia TA; Marmer WN
    Biotechnol Lett; 2004 Jun; 26(11):917-21. PubMed ID: 15269541
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production of starch-polyester bio-support for lipases immobilization: synergistic action of itaconic acid and nanoclay.
    Simões BM; Grossmann MVE; Baron AM; Andrade MM; de Castro MDC; Farias TLDS; de Almeida DA; Garcia PS
    Prep Biochem Biotechnol; 2021; 51(6):580-588. PubMed ID: 33135968
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipase Immobilization on Silica Xerogel Treated with Protic Ionic Liquid and its Application in Biodiesel Production from Different Oils.
    Carvalho NB; Vidal BT; Barbosa AS; Pereira MM; Mattedi S; Freitas LDS; Lima ÁS; Soares CMF
    Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29933608
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ternary biogenic silica/magnetite/graphene oxide composite for the hyperactivation of Candida rugosa lipase in the esterification production of ethyl valerate.
    Jacob AG; Wahab RA; Mahat NA
    Enzyme Microb Technol; 2021 Aug; 148():109807. PubMed ID: 34116744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Factors governing the activity of lyophilised and immobilised lipase preparations in organic solvents.
    Persson M; Wehtje E; Adlercreutz P
    Chembiochem; 2002 Jun; 3(6):566-71. PubMed ID: 12325013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly regioselective synthesis of 3'-O-acyl-trifluridines catalyzed by Pseudomonas cepacia lipase.
    Wang ZY; Bi YH; Zong MH
    Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1161-8. PubMed ID: 21822657
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents.
    Liu Y; Chen D; Yan Y; Peng C; Xu L
    Bioresour Technol; 2011 Nov; 102(22):10414-8. PubMed ID: 21955878
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optically active trans-2-aminocyclopentanols: chemoenzymatic preparation and application as chiral ligands.
    González-Sabín J; Gotor V; Rebolledo F
    Biotechnol J; 2006; 1(7-8):835-41. PubMed ID: 16897829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rhizomucor miehei lipase immobilized on reinforced chitosan-chitin nanowhiskers support for synthesis of eugenyl benzoate.
    Abdul Manan FM; Attan N; Widodo N; Aboul-Enein HY; Wahab RA
    Prep Biochem Biotechnol; 2018 Jan; 48(1):92-102. PubMed ID: 29194017
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Burkholderia cepacia lipase immobilized on heterofunctional magnetic nanoparticles and its application in biodiesel synthesis.
    Li K; Fan Y; He Y; Zeng L; Han X; Yan Y
    Sci Rep; 2017 Nov; 7(1):16473. PubMed ID: 29184106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tailoring a stable and recyclable nanobiocatalyst by immobilization of surfactant treated Burkholderia cepacia lipase on polyaniline nanofibers for biocatalytic application.
    Soni S; Dwivedee BP; Banerjee UC
    Int J Biol Macromol; 2020 Oct; 161():573-586. PubMed ID: 32512104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks.
    Da Rós PC; Silva GA; Mendes AA; Santos JC; de Castro HF
    Bioresour Technol; 2010 Jul; 101(14):5508-16. PubMed ID: 20299207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.