These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31151397)
1. Clinical biomarker discovery by SWATH-MS based label-free quantitative proteomics: impact of criteria for identification of differentiators and data normalization method. Narasimhan M; Kannan S; Chawade A; Bhattacharjee A; Govekar R J Transl Med; 2019 May; 17(1):184. PubMed ID: 31151397 [TBL] [Abstract][Full Text] [Related]
2. SWATH-MS as a tool for biomarker discovery: From basic research to clinical applications. Anjo SI; Santa C; Manadas B Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 28127880 [TBL] [Abstract][Full Text] [Related]
3. Identification of a Set of Conserved Eukaryotic Internal Retention Time Standards for Data-independent Acquisition Mass Spectrometry. Parker SJ; Rost H; Rosenberger G; Collins BC; Malmström L; Amodei D; Venkatraman V; Raedschelders K; Van Eyk JE; Aebersold R Mol Cell Proteomics; 2015 Oct; 14(10):2800-13. PubMed ID: 26199342 [TBL] [Abstract][Full Text] [Related]
4. SWATH mass spectrometry as a tool for quantitative profiling of the matrisome. Krasny L; Bland P; Kogata N; Wai P; Howard BA; Natrajan RC; Huang PH J Proteomics; 2018 Oct; 189():11-22. PubMed ID: 29501709 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset. Ramus C; Hovasse A; Marcellin M; Hesse AM; Mouton-Barbosa E; Bouyssié D; Vaca S; Carapito C; Chaoui K; Bruley C; Garin J; Cianférani S; Ferro M; Van Dorssaeler A; Burlet-Schiltz O; Schaeffer C; Couté Y; Gonzalez de Peredo A J Proteomics; 2016 Jan; 132():51-62. PubMed ID: 26585461 [TBL] [Abstract][Full Text] [Related]
7. A reference library of peripheral blood mononuclear cells for SWATH-MS analysis. Silva C; Santa C; Anjo SI; Manadas B Proteomics Clin Appl; 2016 Jul; 10(7):760-4. PubMed ID: 27188786 [TBL] [Abstract][Full Text] [Related]
8. Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics. Shen X; Hu Q; Li J; Wang J; Qu J J Proteome Res; 2015 Oct; 14(10):4147-57. PubMed ID: 26051676 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Analysis of Human Neural Stem Cell Differentiation by SWATH-MS. Tyleckova J; Cervenka J; Poliakh I; Novak J; Kepkova KV; Skalnikova HK; Vodicka P Methods Mol Biol; 2022; 2520():335-360. PubMed ID: 35579839 [TBL] [Abstract][Full Text] [Related]
10. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Calderón-Celis F; Encinar JR; Sanz-Medel A Mass Spectrom Rev; 2018 Nov; 37(6):715-737. PubMed ID: 28758227 [TBL] [Abstract][Full Text] [Related]
11. Robust and High-Throughput Analytical Flow Proteomics Analysis of Cynomolgus Monkey and Human Matrices With Zeno SWATH Data-Independent Acquisition. Sun W; Lin Y; Huang Y; Chan J; Terrillon S; Rosenbaum AI; Contrepois K Mol Cell Proteomics; 2023 Jun; 22(6):100562. PubMed ID: 37142056 [TBL] [Abstract][Full Text] [Related]
12. SWATH enables precise label-free quantification on proteome scale. Huang Q; Yang L; Luo J; Guo L; Wang Z; Yang X; Jin W; Fang Y; Ye J; Shan B; Zhang Y Proteomics; 2015 Apr; 15(7):1215-23. PubMed ID: 25560523 [TBL] [Abstract][Full Text] [Related]
13. Use of recombinant proteins as a simple and robust normalization method for untargeted proteomics screening: exhaustive performance assessment. Anjo SI; Simões I; Castanheira P; Grãos M; Manadas B Talanta; 2019 Dec; 205():120163. PubMed ID: 31450411 [TBL] [Abstract][Full Text] [Related]
14. A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry. Aoshima K; Takahashi K; Ikawa M; Kimura T; Fukuda M; Tanaka S; Parry HE; Fujita Y; Yoshizawa AC; Utsunomiya S; Kajihara S; Tanaka K; Oda Y BMC Bioinformatics; 2014 Nov; 15(1):376. PubMed ID: 25420746 [TBL] [Abstract][Full Text] [Related]
15. Optimization of Acquisition and Data-Processing Parameters for Improved Proteomic Quantification by Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectrometry. Li S; Cao Q; Xiao W; Guo Y; Yang Y; Duan X; Shui W J Proteome Res; 2017 Feb; 16(2):738-747. PubMed ID: 27995803 [TBL] [Abstract][Full Text] [Related]
16. A systematic evaluation of normalization methods in quantitative label-free proteomics. Välikangas T; Suomi T; Elo LL Brief Bioinform; 2018 Jan; 19(1):1-11. PubMed ID: 27694351 [TBL] [Abstract][Full Text] [Related]
18. Discovery of the Consistently Well-Performed Analysis Chain for SWATH-MS Based Pharmacoproteomic Quantification. Fu J; Tang J; Wang Y; Cui X; Yang Q; Hong J; Li X; Li S; Chen Y; Xue W; Zhu F Front Pharmacol; 2018; 9():681. PubMed ID: 29997509 [TBL] [Abstract][Full Text] [Related]
19. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Collins BC; Hunter CL; Liu Y; Schilling B; Rosenberger G; Bader SL; Chan DW; Gibson BW; Gingras AC; Held JM; Hirayama-Kurogi M; Hou G; Krisp C; Larsen B; Lin L; Liu S; Molloy MP; Moritz RL; Ohtsuki S; Schlapbach R; Selevsek N; Thomas SN; Tzeng SC; Zhang H; Aebersold R Nat Commun; 2017 Aug; 8(1):291. PubMed ID: 28827567 [TBL] [Abstract][Full Text] [Related]
20. Mass spectrometric protein maps for biomarker discovery and clinical research. Liu Y; Hüttenhain R; Collins B; Aebersold R Expert Rev Mol Diagn; 2013 Nov; 13(8):811-25. PubMed ID: 24138574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]