These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31151397)
21. A statistical selection strategy for normalization procedures in LC-MS proteomics experiments through dataset-dependent ranking of normalization scaling factors. Webb-Robertson BJ; Matzke MM; Jacobs JM; Pounds JG; Waters KM Proteomics; 2011 Dec; 11(24):4736-41. PubMed ID: 22038874 [TBL] [Abstract][Full Text] [Related]
22. Comparison of fractionation proteomics for local SWATH library building. Govaert E; Van Steendam K; Willems S; Vossaert L; Dhaenens M; Deforce D Proteomics; 2017 Aug; 17(15-16):. PubMed ID: 28664598 [TBL] [Abstract][Full Text] [Related]
23. Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms. Röst HL; Aebersold R; Schubert OT Methods Mol Biol; 2017; 1550():289-307. PubMed ID: 28188537 [TBL] [Abstract][Full Text] [Related]
24. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation. Lewandowska AE; Macur K; Czaplewska P; Liss J; Łukaszuk K; Ołdziej S J Proteomics; 2019 Jan; 191():131-142. PubMed ID: 29530678 [TBL] [Abstract][Full Text] [Related]
25. Minimal sample requirement for highly multiplexed protein quantification in cell lines and tissues by PCT-SWATH mass spectrometry. Shao S; Guo T; Koh CC; Gillessen S; Joerger M; Jochum W; Aebersold R Proteomics; 2015 Nov; 15(21):3711-21. PubMed ID: 26287124 [TBL] [Abstract][Full Text] [Related]
26. SWATH-MS Protocols in Human Diseases. Chantada-Vázquez MDP; García Vence M; Serna A; Núñez C; Bravo SB Methods Mol Biol; 2021; 2259():105-141. PubMed ID: 33687711 [TBL] [Abstract][Full Text] [Related]
27. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Liu Y; Hüttenhain R; Surinova S; Gillet LC; Mouritsen J; Brunner R; Navarro P; Aebersold R Proteomics; 2013 Apr; 13(8):1247-56. PubMed ID: 23322582 [TBL] [Abstract][Full Text] [Related]
28. SWATH-based proteomics identified carbonic anhydrase 2 as a potential diagnosis biomarker for nasopharyngeal carcinoma. Luo Y; Mok TS; Lin X; Zhang W; Cui Y; Guo J; Chen X; Zhang T; Wang T Sci Rep; 2017 Jan; 7():41191. PubMed ID: 28117408 [TBL] [Abstract][Full Text] [Related]
29. In-depth evaluation of software tools for data-independent acquisition based label-free quantification. Kuharev J; Navarro P; Distler U; Jahn O; Tenzer S Proteomics; 2015 Sep; 15(18):3140-51. PubMed ID: 25545627 [TBL] [Abstract][Full Text] [Related]
30. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. Ortea I; Rodríguez-Ariza A; Chicano-Gálvez E; Arenas Vacas MS; Jurado Gámez B J Proteomics; 2016 Apr; 138():106-14. PubMed ID: 26917472 [TBL] [Abstract][Full Text] [Related]
31. Accelerated Protein Biomarker Discovery from FFPE Tissue Samples Using Single-Shot, Short Gradient Microflow SWATH MS. Sun R; Hunter C; Chen C; Ge W; Morrice N; Liang S; Zhu T; Yuan C; Ruan G; Zhang Q; Cai X; Yu X; Chen L; Dai S; Luan Z; Aebersold R; Zhu Y; Guo T J Proteome Res; 2020 Jul; 19(7):2732-2741. PubMed ID: 32053377 [TBL] [Abstract][Full Text] [Related]
32. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Ludwig C; Gillet L; Rosenberger G; Amon S; Collins BC; Aebersold R Mol Syst Biol; 2018 Aug; 14(8):e8126. PubMed ID: 30104418 [TBL] [Abstract][Full Text] [Related]
33. Current trends in quantitative proteomics - an update. Li H; Han J; Pan J; Liu T; Parker CE; Borchers CH J Mass Spectrom; 2017 May; 52(5):319-341. PubMed ID: 28418607 [TBL] [Abstract][Full Text] [Related]
34. SWATH Mass Spectrometry Applied to Cerebrospinal Fluid Differential Proteomics: Establishment of a Sample-Specific Method. Anjo SI; Santa C; Manadas B Methods Mol Biol; 2019; 2044():169-189. PubMed ID: 31432413 [TBL] [Abstract][Full Text] [Related]
35. Improving Proteomic Identification Using Narrow Isolation Windows with Zeno SWATH Data-Independent Acquisition. Gu K; Kumabe H; Yamamoto T; Tashiro N; Masuda T; Ito S; Ohtsuki S J Proteome Res; 2024 Aug; 23(8):3484-3495. PubMed ID: 38978496 [TBL] [Abstract][Full Text] [Related]
37. SWATH Mass Spectrometry Performance Using Extended Peptide MS/MS Assay Libraries. Wu JX; Song X; Pascovici D; Zaw T; Care N; Krisp C; Molloy MP Mol Cell Proteomics; 2016 Jul; 15(7):2501-14. PubMed ID: 27161445 [TBL] [Abstract][Full Text] [Related]
38. ICan: an optimized ion-current-based quantification procedure with enhanced quantitative accuracy and sensitivity in biomarker discovery. Tu C; Sheng Q; Li J; Shen X; Zhang M; Shyr Y; Qu J J Proteome Res; 2014 Dec; 13(12):5888-97. PubMed ID: 25285707 [TBL] [Abstract][Full Text] [Related]
39. Ultra-High-Resolution IonStar Strategy Enhancing Accuracy and Precision of MS1-Based Proteomics and an Extensive Comparison with State-of-the-Art SWATH-MS in Large-Cohort Quantification. Wang X; Jin L; Hu C; Shen S; Qian S; Ma M; Zhu X; Li F; Wang J; Tian Y; Qu J Anal Chem; 2021 Mar; 93(11):4884-4893. PubMed ID: 33687211 [TBL] [Abstract][Full Text] [Related]
40. SWATH Mass Spectrometry for Proteomics of Non-Depleted Plasma. Krisp C; Molloy MP Methods Mol Biol; 2017; 1619():373-383. PubMed ID: 28674897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]