BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 31151592)

  • 1. Non-extractable polyphenols and in vitro bile acid-binding capacity of dried persimmon (Diospyros kaki) fruit.
    Hamauzu Y; Suwannachot J
    Food Chem; 2019 Sep; 293():127-133. PubMed ID: 31151592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo evaluation of the bile acid-binding properties of dried persimmon and its non-extractable proanthocyanidin fraction.
    Hamauzu Y; Ikeda E
    Food Chem; 2022 Mar; 373(Pt B):131617. PubMed ID: 34802807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bile acid-binding ability of kaki-tannin from young fruits of persimmon (Diospyros kaki) in vitro and in vivo.
    Matsumoto K; Kadowaki A; Ozaki N; Takenaka M; Ono H; Yokoyama S; Gato N
    Phytother Res; 2011 Apr; 25(4):624-8. PubMed ID: 20922818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice.
    Matsumoto K; Yokoyama S; Gato N
    Phytother Res; 2010 Feb; 24(2):205-10. PubMed ID: 19585467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-insoluble condensed tannins content of young persimmon fruits-derived crude fibre relates to its bile acid-binding ability.
    Takekawa K; Matsumoto K
    Nat Prod Res; 2012; 26(23):2255-8. PubMed ID: 22250751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Major water-soluble polyphenols, proanthocyanidins, in leaves of persimmon (Diospyros kaki) and their alpha-amylase inhibitory activity.
    Kawakami K; Aketa S; Nakanami M; Iizuka S; Hirayama M
    Biosci Biotechnol Biochem; 2010; 74(7):1380-5. PubMed ID: 20622463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High molecular weight persimmon (Diospyros kaki L.) proanthocyanidin: a highly galloylated, A-linked tannin with an unusual flavonol terminal unit, myricetin.
    Li C; Leverence R; Trombley JD; Xu S; Yang J; Tian Y; Reed JD; Hagerman AE
    J Agric Food Chem; 2010 Aug; 58(16):9033-42. PubMed ID: 23654234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of peel and pulp proanthocyanidins and carotenoids during ripening in persimmon "Kaki Tipo" cv, cultivated in Italy.
    Bordiga M; Travaglia F; Giuffrida D; Mangraviti D; Rigano F; Mondello L; Arlorio M; Coïsson JD
    Food Res Int; 2019 Jun; 120():800-809. PubMed ID: 31000300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Persimmon Fruit Polyphenols on Postprandial Plasma Glucose Elevation in Rats and Humans.
    Takemori K; Akaho K; Iwase M; Okano M; Kometani T
    J Nutr Sci Vitaminol (Tokyo); 2022; 68(4):331-341. PubMed ID: 36047105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit.
    Yang S; Jiang Y; Xu L; Shiratake K; Luo Z; Zhang Q
    Plant Physiol Biochem; 2016 Nov; 108():241-250. PubMed ID: 27472890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some essential phytochemicals and the antioxidant potential in fresh and dried persimmon.
    Jung ST; Park YS; Zachwieja Z; Folta M; Barton H; Piotrowicz J; Katrich E; Trakhtenberg S; Gorinstein S
    Int J Food Sci Nutr; 2005 Mar; 56(2):105-13. PubMed ID: 16019320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of the rise in plasma cholesterol and glucose levels by kaki-tannin and characterization of its bile acid binding capacity.
    Nishida S; Katsumi N; Matsumoto K
    J Sci Food Agric; 2021 Mar; 101(5):2117-2124. PubMed ID: 32981084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deastringent Peel Extracts of Persimmon (
    Jeong DW; Cho CH; Lee JS; Lee SH; Kim T; Kim DO
    J Microbiol Biotechnol; 2018 Jul; 28(7):1094-1104. PubMed ID: 29975999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation studies of persimmon plant (Diospyros kaki) for physiological benefits and bioaccessibility of antioxidants by in vitro simulated gastrointestinal digestion.
    Martínez-Las Heras R; Pinazo A; Heredia A; Andrés A
    Food Chem; 2017 Jan; 214():478-485. PubMed ID: 27507501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of polyphenol bioaccessibility and kinetic of starch digestion of spaghetti with persimmon (Dyospyros kaki) flours coproducts during in vitro gastrointestinal digestion.
    Lucas-González R; Ángel Pérez-Álvarez J; Moscaritolo S; Fernández-López J; Sacchetti G; Viuda-Martos M
    Food Chem; 2021 Feb; 338():128142. PubMed ID: 33092002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparing a carotenoid polyphenol-enriched extract from the peel of persimmon, Diospyros kaki L.f.
    Izuchi R; Takahashi H; Inada Y
    Biosci Biotechnol Biochem; 2009 Dec; 73(12):2793-5. PubMed ID: 19966462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant potential in non-extractable fractions of dried persimmon (Diospyros kaki Thunb.).
    Matsumura Y; Ito T; Yano H; Kita E; Mikasa K; Okada M; Furutani A; Murono Y; Shibata M; Nishii Y; Kayano S
    Food Chem; 2016 Jul; 202():99-103. PubMed ID: 26920271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of polyphenols, sugars, and other polar compounds in persimmon juices produced under different technologies and their assessment in terms of compositional variations.
    Jiménez-Sánchez C; Lozano-Sánchez J; Marti N; Saura D; Valero M; Segura-Carretero A; Fernández-Gutiérrez A
    Food Chem; 2015 Sep; 182():282-91. PubMed ID: 25842339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion.
    Lucas-González R; Viuda-Martos M; Pérez Álvarez JA; Fernández-López J
    Food Chem; 2018 Aug; 256():252-258. PubMed ID: 29606446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persimmon tannin accounts for hypolipidemic effects of persimmon through activating of AMPK and suppressing NF-κB activation and inflammatory responses in high-fat diet rats.
    Zou B; Ge ZZ; Zhang Y; Du J; Xu Z; Li CM
    Food Funct; 2014 Jul; 5(7):1536-46. PubMed ID: 24841999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.