BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31151739)

  • 1. Nucleosome Crowding in Chromatin Slows the Diffusion but Can Promote Target Search of Proteins.
    Kanada R; Terakawa T; Kenzaki H; Takada S
    Biophys J; 2019 Jun; 116(12):2285-2295. PubMed ID: 31151739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosome positioning in relation to nucleosome spacing and DNA sequence-specific binding of a protein.
    Pusarla RH; Vinayachandran V; Bhargava P
    FEBS J; 2007 May; 274(9):2396-410. PubMed ID: 17419736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding.
    Bonaldi T; Längst G; Strohner R; Becker PB; Bianchi ME
    EMBO J; 2002 Dec; 21(24):6865-73. PubMed ID: 12486007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome.
    Nodelman IM; Horvath KC; Levendosky RF; Winger J; Ren R; Patel A; Li M; Wang MD; Roberts E; Bowman GD
    Nucleic Acids Res; 2016 Sep; 44(16):7580-91. PubMed ID: 27174939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale modeling of nucleosome dynamics.
    Sharma S; Ding F; Dokholyan NV
    Biophys J; 2007 Mar; 92(5):1457-70. PubMed ID: 17142268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-driven homology pairing of chromatin fibers: the role of electrostatics and protein-induced bridging.
    Cherstvy AG; Teif VB
    J Biol Phys; 2013 Jun; 39(3):363-85. PubMed ID: 23860914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations.
    Korolev N; Vorontsova OV; Nordenskiöld L
    Prog Biophys Mol Biol; 2007; 95(1-3):23-49. PubMed ID: 17291569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation.
    Klein BJ; Muthurajan UM; Lalonde ME; Gibson MD; Andrews FH; Hepler M; Machida S; Yan K; Kurumizaka H; Poirier MG; Côté J; Luger K; Kutateladze TG
    Nucleic Acids Res; 2016 Jan; 44(1):472-84. PubMed ID: 26626149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome.
    Cirillo LA; McPherson CE; Bossard P; Stevens K; Cherian S; Shim EY; Clark KL; Burley SK; Zaret KS
    EMBO J; 1998 Jan; 17(1):244-54. PubMed ID: 9427758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for crystallizing a chromatin protein in complex with the nucleosome core particle.
    Makde RD; Tan S
    Anal Biochem; 2013 Nov; 442(2):138-45. PubMed ID: 23928047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linker histone-dependent organization and dynamics of nucleosome entry/exit DNAs.
    Sivolob A; Prunell A
    J Mol Biol; 2003 Aug; 331(5):1025-40. PubMed ID: 12927539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling.
    Kagalwala MN; Glaus BJ; Dang W; Zofall M; Bartholomew B
    EMBO J; 2004 May; 23(10):2092-104. PubMed ID: 15131696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulator Activities of Nucleosome-Excluding DNA Sequences without Bound Chromatin Looping Proteins.
    Matsushima Y; Sakamoto N; Awazu A
    J Phys Chem B; 2019 Feb; 123(5):1035-1043. PubMed ID: 30620587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosome allostery in pioneer transcription factor binding.
    Tan C; Takada S
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20586-20596. PubMed ID: 32778600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Nucleosome Dynamics In Vivo.
    Henikoff S
    Cold Spring Harb Perspect Med; 2016 Sep; 6(9):. PubMed ID: 27503998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical analysis of nucleosome targeting by Tn5 transposase.
    Sato S; Arimura Y; Kujirai T; Harada A; Maehara K; Nogami J; Ohkawa Y; Kurumizaka H
    Open Biol; 2019 Aug; 9(8):190116. PubMed ID: 31409230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysics of Chromatin Dynamics.
    Fierz B; Poirier MG
    Annu Rev Biophys; 2019 May; 48():321-345. PubMed ID: 30883217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.