BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 31151898)

  • 1. Validation of the transferability of membrane-based fed-batch shake flask cultivations to stirred-tank reactor using three different protease producing Bacillus strains.
    Müller J; Hütterott A; Habicher T; Mußmann N; Büchs J
    J Biosci Bioeng; 2019 Nov; 128(5):599-605. PubMed ID: 31151898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing substrate limitations to overcome catabolite repression in a protease producing Bacillus licheniformis strain using membrane-based fed-batch shake flasks.
    Habicher T; John A; Scholl N; Daub A; Klein T; Philip P; Büchs J
    Biotechnol Bioeng; 2019 Jun; 116(6):1326-1340. PubMed ID: 30712275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic evaluation of characteristics of the membrane-based fed-batch shake flask.
    Philip P; Meier K; Kern D; Goldmanns J; Stockmeier F; Bähr C; Büchs J
    Microb Cell Fact; 2017 Jul; 16(1):122. PubMed ID: 28716035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask.
    Philip P; Kern D; Goldmanns J; Seiler F; Schulte A; Habicher T; Büchs J
    Microb Cell Fact; 2018 May; 17(1):69. PubMed ID: 29743073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishing a Fed-Batch Process for Protease Expression with Bacillus licheniformis in Polymer-Based Controlled-Release Microtiter Plates.
    Habicher T; Rauls EKA; Egidi F; Keil T; Klein T; Daub A; Büchs J
    Biotechnol J; 2020 Feb; 15(2):e1900088. PubMed ID: 31471944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening for optimal protease producing Bacillus licheniformis strains with polymer-based controlled-release fed-batch microtiter plates.
    Habicher T; Klein T; Becker J; Daub A; Büchs J
    Microb Cell Fact; 2021 Feb; 20(1):51. PubMed ID: 33622330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production.
    Heyman B; Lamm R; Tulke H; Regestein L; Büchs J
    Microb Cell Fact; 2019 May; 18(1):78. PubMed ID: 31053124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fed-batch mode in shake flasks by slow-release technique.
    Jeude M; Dittrich B; Niederschulte H; Anderlei T; Knocke C; Klee D; Büchs J
    Biotechnol Bioeng; 2006 Oct; 95(3):433-45. PubMed ID: 16736531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae.
    Hortsch R; Krispin H; Weuster-Botz D
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):297-304. PubMed ID: 20931236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions.
    Elsayed EA; Farid MA; El-Enshasy HA
    BMC Biotechnol; 2019 Jul; 19(1):46. PubMed ID: 31311527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations.
    Li J; Jaitzig J; Lu P; Süssmuth RD; Neubauer P
    Microb Cell Fact; 2015 Jun; 14():83. PubMed ID: 26063334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel reactor systems for bioprocess development.
    Weuster-Botz D
    Adv Biochem Eng Biotechnol; 2005; 92():125-43. PubMed ID: 15791935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement and scale-down of a Trichoderma reesei shake flask protocol to microtiter plates enables high-throughput screening.
    Giese H; Kruithof P; Meier K; Sieben M; Antonov E; Hommes RW; Büchs J
    J Biosci Bioeng; 2014 Dec; 118(6):702-9. PubMed ID: 24982019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated process development for protease production in continuous multi-stage cultures.
    Raninger A; Steiner W
    Biotechnol Bioeng; 2003 Jun; 82(5):517-24. PubMed ID: 12652475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of the production process for the anticancer lead compound illudin M: process development in stirred tank bioreactors.
    Chaverra-Muñoz L; Hüttel S
    Microb Cell Fact; 2022 Jul; 21(1):145. PubMed ID: 35843931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High cell density media for Escherichia coli are generally designed for aerobic cultivations - consequences for large-scale bioprocesses and shake flask cultures.
    Soini J; Ukkonen K; Neubauer P
    Microb Cell Fact; 2008 Aug; 7():26. PubMed ID: 18687130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose limited feed strategy leads to increased production of fusicocca-2,10(14)-diene by Saccharomyces cerevisiae.
    Halka LM; Nowacki C; Kleinschmidt A; Koenen K; Wichmann R
    AMB Express; 2018 Aug; 8(1):132. PubMed ID: 30136000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors.
    Dahlgren ME; Powell AL; Greasham RL; George HA
    Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor.
    Glazyrina J; Materne EM; Dreher T; Storm D; Junne S; Adams T; Greller G; Neubauer P
    Microb Cell Fact; 2010 May; 9():42. PubMed ID: 20509968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of rifemycins production by Amycolatopsis mediterranei in batch and fed-batch cultures.
    El-Enshasy HA; Beshay UI; El-Diwany AI; Omar HM; El-Kholy AG; El-Najar R
    Acta Microbiol Pol; 2003; 52(3):301-13. PubMed ID: 14743983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.